Skip to main content
Log in

Algorithm for Hamilton–Jacobi Equations in Density Space Via a Generalized Hopf Formula

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We design fast numerical methods for Hamilton–Jacobi equations in density space (HJD), which arises in optimal transport and mean field games. We proposes an algorithm using a generalized Hopf formula in density space. The formula helps transforming a problem from an optimal control problem in density space, which are constrained minimizations supported on both spatial and time variables, to an optimization problem over only one spatial variable. This transformation allows us to compute HJD efficiently via multi-level approaches and coordinate descent methods. Rigorous derivation of the Hopf formula is provided under restricted assumptions and for a relatively narrow case; meanwhile our practical investigation allows us to conjecture that the actual range of applicability should be wider, and therefore we conjecture the formula can be applied to a wider class of practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51(5), 2585–2612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almulla, N., Ferreira, R., Gomes, D.: Two numerical approaches to stationary mean-field games. Dyn. Games Appl. 7(4), 657–682 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benamou, J.-D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardaliaguet, P.: Notes on mean field games (from P.-L. Lions’ lectures at College de France) (2013) (preprint). https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf

  9. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The master equation and the convergence problem in mean field games. [math] (2015). arXiv:1509.02505

  10. Cardaliaguet, P., Jimenez, C.: Optimal transport with convex obstacle. J. Math. Anal. Appl. 381(1), 43–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chow, S.-N., Dieci, L., Li, W., Zhou, H.: Entropy dissipation semi-discretization schemes for Fokker–Planck equations. [math] (2016). arXiv:1608.02628

  12. Chow, S.-N. , Li, W., Zhou, H.: A discrete Schrodinger equation via optimal transport on graphs. [math] (2017). arXiv:1705.07583

  13. Chow, S.-N., Li, W., Zhou, H.: Entropy dissipation of Fokker–Planck equations on graphs. [math] (2017). arXiv:1701.04841

  14. Chow, Y.T., Darbon, J., Osher, S., Yin, W.: Algorithm for overcoming the curse of dimensionality for time-dependent non-convex Hamilton–Jacobi equations arising from optimal control and differential games problems. J. Sci. Comput. 73(2–3), 617–643 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chow, Y.T., Darbon, J., Osher, S., Yin, W.: Algorithm for overcoming the curse of dimensionality for certain non-convex Hamilton–Jacobi equations, projections and differential games. Ann. Math. Sci. Appl. 3, 369–403 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chow, Y.T., Darbon, J., Osher, S., Yin, W.: Algorithm for overcoming the curse of dimensionality for state-dependent Hamilton–Jacobi equations. J. Comput. Phys. 387, 376–409 (2019)

    Article  MathSciNet  Google Scholar 

  17. Darbon, J., Osher, S.: Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere. Res. Math. Sci. 3(1), 19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations. Number v. 19 in Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  19. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations. Technical report, Wisconsin Univ-Madison Mathematics Research Center (1983)

  20. Gangbo, W., Li, W., Mou, C.: Geodesic of minimal length in the set of probability measures on graphs. [math] (2017). arXiv:1712.09266

  21. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gangbo, W., Nguyen, T., Tudorascu, A.: Hamilton–Jacobi equations in the wasserstein space. Methods Appl. Anal. 15, 155–184 (2008). Please check and confirm the inserted journal title, volume number and page number is correct for the reference [22]

    MathSciNet  MATH  Google Scholar 

  23. Gangbo, W., Swiech, A.: Existence of a solution to an equation arising from the theory of mean field games. J. Differ. Equ. 259(11), 6573–6643 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications. In: Morel, J.-M., Takens, F., Teissier, B. (eds.) Paris-Princeton Lectures on Mathematical Finance 2010, vol. 2003, pp. 205–266. Springer, Berlin (2011)

    Chapter  Google Scholar 

  25. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Komiya, H.: Elementary proof for Sion’s minimax theorem. Kodai Math. J. 11(1), 5–7 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, W., Yin, P., Osher, S.: Computations of optimal transport distance with fisher information regularization. J. Sci. Comput. 75, 1581–1595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Monderer, D., Shapley, L.S.: Potential Games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966)

    Article  Google Scholar 

  31. Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  32. Villani, C.: Optimal Transport: Old and New. Number 338 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009)

  33. Yegorov, I., Dower, P.: Perspectives on characteristics based curse-of-dimensionality-free numerical approaches for solving Hamilton–Jacobi equations. [math] (2017). arXiv:1711.03314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yat Tin Chow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by AFOSR MURI Proposal Numbers 18RT0073, ONR N000141712162 and NSF DMS-1720237, AFOSR MURI Proposal Number 18RT0073, ONR Grant: N00014-1-0444, N00014-16-1-2119, N00014-16-215-1, NSF Grant ECCS-1462398 and DOE Grant DE-SC00183838.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, Y.T., Li, W., Osher, S. et al. Algorithm for Hamilton–Jacobi Equations in Density Space Via a Generalized Hopf Formula. J Sci Comput 80, 1195–1239 (2019). https://doi.org/10.1007/s10915-019-00972-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00972-9

Keywords

Navigation