Skip to main content
Log in

Computations of Optimal Transport Distance with Fisher Information Regularization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a fast algorithm to approximate the optimal transport distance. The main idea is to add a Fisher information regularization into the dynamical setting of the problem, originated by Benamou and Brenier. The regularized problem is shown to be smooth and strictly convex, thus many classical fast algorithms are available. In this paper, we adopt Newton’s method, which converges to the minimizer with a quadratic rate. Several numerical examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numerische Mathematik 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlen, E.: Stochastic mechanics: a look back and a look ahead. Diffus. Quant. Theory Radic. Elem. Math. 47, 117–139 (2014)

    MathSciNet  Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.-X.: : An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics, Foundations of Computational Mathematics, pp. 1–44. Springer, Berlin (2016)

  5. Chen, Y., Georgiou, T., Pavon, M.: On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Georgiou, T., Pavon, M.: Entropic and displacement interpolation: a computational approach using the Hilbert metric. SIAM J. Appl. Math. 76(6), 2375–2396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, S.-N., Huang, W., Li, Y., Zhou, H.: Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow, S.-N., Li, W., Zhou, H.: Entropy dissipation of Fokker-Planck equations on graphs. arXiv:1701.04841 (2017)

  9. Chow, S-N., Dieci, L., Li, W., Zhou, H.: Entropy dissipation semi-discretization schemes for Fokker–Planck equations. arXiv:1608.02628 (2016)

  10. Chow, S-N., Li, W., Zhou, H.: A discrete Schrödinger equation via optimal transport on graphs. arXiv:1705.07583 (2017)

  11. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Conference on Neural Information Processing Systems (NIPS13), pp. 2292–2300, (2013)

  12. Evans, L.: Partial differential equations and Monge–Kantorovich mass transfer. Curr. Dev. Math. 1, 65–126 (1997)

    Article  MATH  Google Scholar 

  13. Evans, L., Gangbo, W.: Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  14. Roy Frieden, B.: Science from Fisher Information: A Unification. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Gangbo, W., Li, W., Mou, C.: Schrödinger bridge problem on a graph via optimal transport, (2017)

  16. Haber, E., Horesh, R.: A multilevel method for the solution of time dependent optimal transport. Numer. Math. Theory Methods Appl. 8(1), 97–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton-type methods for convex optimization. In: Advances in Neural Information Processing Systems (NIPS), vol 25 (2012)

  19. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. arXiv preprint arXiv:1308.0215, (2013)

  20. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J.: Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion. Geophys. J. Int. 205(1), 345–377 (2016)

    Article  MATH  Google Scholar 

  22. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1966 (1079)

    Google Scholar 

  23. Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7(1), 212–238 (2014). SIAM

  24. Rubner, Y., Tomasi, C., Guibas, L.: The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  25. Rudin, L., Osher, S.: Fatemi, Emad: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  26. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkuser, Basel (2015)

    Book  MATH  Google Scholar 

  27. Schrödinger, E.: Quantisierung als Eigenwertproblem (zweite Mitteilung). Annalen der Physik 79, 489–527 (1926)

    Article  MATH  Google Scholar 

  28. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  29. Wuchen, L.: A study of stochastic differential equations and Fokker–Planck equations with applications. Ph.D. thesis, (2016)

  30. Wuchen, L., Ernest, R., Stanley, O., Wotao, Y., Wilfrid, G.: A fast algorithm for earth mover’s distance based on optimal transport and \(L_1\) type regularization. arXiv:1609.07092, (2016)

  31. Wuchen, L., Penghang, Y., Stanley, O.: A fast algorithm for unbalanced \(L_1\) Monge–Katorvich problem. CAM report, (2016)

  32. Yasue, K.: Stochastic calculus of variations. J. Funct. Anal. 41, 327–340 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professors Shui-Nee Chow, Wilfrid Gangbo and Haomin Zhou for many discussions on related topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuchen Li.

Additional information

This work is partially supported by ONR Grants N000141410683, N000141210838 and DOE Grant DE-SC00183838.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yin, P. & Osher, S. Computations of Optimal Transport Distance with Fisher Information Regularization. J Sci Comput 75, 1581–1595 (2018). https://doi.org/10.1007/s10915-017-0599-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0599-0

Keywords

Navigation