Skip to main content
Log in

New Analysis of Galerkin FEMs for Miscible Displacement in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper is concerned with optimal error estimates of classical Galerkin FEMs for the equations of incompressible miscible flows in porous media. The analysis done in the last several decades shows that classical Galerkin FEMs provide the numerical concentration of the accuracy \(O(\tau ^k+h^{r+1} + h^s)\) in \(L^2\)-norm. This analysis leads to the use of higher order finite element approximation to the pressure than that to the concentration in various numerical simulations to achieve the best rate of convergence. However, this error estimate is not optimal. The purpose of this paper is to establish the optimal \(L^2\) error estimate \(O(\tau ^k + h^{r+1} + h^{s+1})\), from which one can see that the best convergence rate can be achieved by taking the same order \((r=s\)) approximation to the concentration and pressure. Clearly Galerkin FEMs with \(r=s\) are less expensive in computation and easier for implementation. Numerical results for both two and three-dimensional models are presented to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. An, R., Su, J.: Optimal error estimates of semi-implicit Galerkin method for time-dependent Nematic liquid crystal flows. J. Sci. Comput. 74, 979–1008 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bause, M., Knabner, P.: Uniform error analysis for Lagrange–Galerkin approximations of convection-dominated problems. SIAM J. Numer. Anal. 39, 1954–1984 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)

    Book  MATH  Google Scholar 

  4. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  5. Cai, W., Li, B., Lin, Y., Sun, W.: Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor. Numer. Math. 141, 1009–1042 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coutinho, A., Dias, C., Alves, J., Landau, L., Loula, A., Malta, S., Castro, R., Garcia, E.: Stabilized methods and post-processing techniques for miscible displacements. Comput. Methods Appl. Mech. Eng. 193, 1421–1436 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas Jr., J.: The numerical simulation of miscible displacement. In: Oden, J.T. (ed.) Computational Methods in nonlinear Mechanics. North Holland, Amsterdam (1980)

    Google Scholar 

  8. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Douglas Jr., J., Furtada, F., Pereira, F.: On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs. Comput. Geosci. 1, 155–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Miles, W.W.: Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41, 457–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ewing, R.E., Russell, T.F.: Efficient time-stepping methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 19, 1–67 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems with point sources and sinks–unit mobility ratio case. In: Mathematical Methods in Energy Research (Laramie, Wyo., 1982/1983), SIAM, Philadelphia, PA, pp. 40–58 (1984)

  14. Ewing, R.E. (ed.): The mathematics of Reservoir Simulation. Frontiers in Applied Mathematics. SIAM, Philadelphia (1983)

    MATH  Google Scholar 

  15. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, H., Sun, W.: An efficient fully-linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg–Landau equations of superconductivity. J. Comput. Phys. 294, 329–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heywood, J.G., Rannacher, R.: Finite element approximation of the non-stationary Navier–Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumar, S., Nataraj, N., Pani, A.K.: Finite volume element method for the incompressible miscible displacement problems in porous media. Proc. Appl. Math. Mech. 7, 2020015–2020016 (2007)

    Article  Google Scholar 

  20. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, B., Sun, W.: Regularity of the diffusion–dispersion tensor and error analysis of FEMs for a porous media flow. SIAM J. Numer. Anal. 53, 1418–1437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin–Galerkin FEMs for porous medium flows. Commun. Comput. Phys. 15, 1141–1158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Chen, H.Z.: Finite element method for incompressible miscible displacement in porous media. Acta Math. Appl. Sinica 9, 204–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    MATH  Google Scholar 

  26. Malta, S.M.C., Loula, A.F.D.: Numerical analysis of finite element methods for miscible displacements in porous media. Numer. Methods Part. Differ. Equ. 14, 519–548 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22, 970–1013 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Russell, T.F.: An incompletely iterated characteristic finite element method for miscible displacement problem. Thesis (Ph.D.) The University of Chicago(1980)

  29. Scheidegger, A.E.: The Physics of Flow Through Porous Media. The MacMillan Company, New York (1957)

    MATH  Google Scholar 

  30. Scovazzi, G., Huang, H., Collis, S.S., Yin, J.: A fully-coupled upwind discontinuous Galerkin method for incompressible porous media flows: high-order computations of viscous fingering instabilities in complex geometry. J. Comput. Phys. 252, 86–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin Heidelberg (1997)

    Book  MATH  Google Scholar 

  35. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Wang, K.: Uniform estimates of Eulerian–Lagrangian methods for transient convection–diffusion equations in multiple space dimensions. SIAM J. Numer. Anal. 48, 1444–1473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3300–3320 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Wheeler, M.F.: A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  40. Wu, C., Sun, W.: Analysis of Galerkin FEMs for a mixed formulation of Ginzburg–Landau equations under temporal gauge. SIAM J. Numer. Anal. 56, 1291–1312 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, J.: A posteriori error of a discontinuous Galerkin scheme for compressible miscible displacement problems with molecular diffusion and dispersion. Int. J. Numer. Methods Fluids 65, 781–797 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng, H., Yu, J., Shan, L.: Unconditional error estimates for time dependent viscoelastic fluid flow. Appl. Numer. Math. 119, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the authors was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302718).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Sun, W. New Analysis of Galerkin FEMs for Miscible Displacement in Porous Media. J Sci Comput 80, 903–923 (2019). https://doi.org/10.1007/s10915-019-00963-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00963-w

Navigation