Skip to main content
Log in

Multiscale Polynomial-Based High-Order Central High Resolution Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Polynomial-based high order central high resolution schemes with semi-discrete forms are integrated with multiresolution-based adapted cells/grids. To preserve the positivity condition on non-uniform cells/grids, the corresponding formulations are studied, redesigned or developed. Two general approaches can be used for polynomial-based reconstructions: (a) direct interpolation by a polynomial, (b) proper combination of different polynomials to construct a new polynomial with desired features. Based on these approaches, three polynomial-based reconstructions are considered: (i) parabolic polynomials interpolating average solutions of three successive cells; (ii) piece-wise parabolic methods (PPMs) obtained with two different local stencils; (iii) central-WENO schemes [based on the results of approach (i)]. For the first approach, the corresponding features, stability conditions, formulations and nonlinear limiters are studied and updated. For the second approach, for more localized stencils, new independent variables (e.g., first and second spatial derivatives) are introduced by adding new conservation laws. Two PPM-based central schemes are formulated and a new limiter and a new updating procedure are introduced. For the third approach, the average-interpolating parabolic polynomial [in approach (i)] is used in the framework of the central-WENO formulation. Third and fourth order formulations are provided on non-uniform grids/cells. Finally some numerical examples are presented to verify the results and to assess effectiveness and robustness of the three approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Liu, X.D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes. I. SIAM J. Numer. Anal. 33(2), 760–779 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Liu, X.D., Tadmor, E.: Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79(3), 397–425 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Kurganov, A., Petrova, G.: A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. 88(4), 683–729 (2001)

    MathSciNet  MATH  Google Scholar 

  4. White, L., Adcroft, A.: A high-order finite volume remapping scheme for nonuniform grids: the piecewise quartic method (PQM). J. Comput. Phys. 227(15), 7394–7422 (2008)

    MathSciNet  MATH  Google Scholar 

  5. White, L., Adcroft, A., Hallberg, R.: High-order regridding-remapping schemes for continuous isopycnal and generalized coordinates in ocean models. J. Comput. Phys. 228(23), 8665–8692 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Velechovsky, J., Liska, R., Shashkov, M.: High-order remapping with piece-wise parabolic reconstruction. Comput. Fluids 83, 164–169 (2013). https://doi.org/10.1016/j.compfluid.2012.06.006

    MathSciNet  MATH  Google Scholar 

  7. Bartzis, J.G., Vlachogiannis, D., Sfetsos, A.: Thematic area 5: best practice advice for environmental flows. QNET-CFD Netw. Newslett. 2(4), 34–39 (2004)

    Google Scholar 

  8. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., Shirasawa, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind. Eng. Ind. Aerodyn. 96(10), 1749–1761 (2008)

    Google Scholar 

  9. Scaperdas, A., Gilham, S.: Thematic area 4: best practice advice for civil construction and HVAC. The QNET-CFD Netw. Newslett. 2(4), 28–33 (2004)

    Google Scholar 

  10. Franke, J., Hellsten, A., Schlünzen, H., Carissimo, B.: Best practice guideline for the CFD simulation of flows in the urban environment. COST Action 732: Quality Assurance and Improvement of Microscale Meteorological Models. Meteorological Institute (2007)

  11. Yousefi, H., Rabczuk, T.: High resolution wavelet based central schemes for modeling nonlinear propagating fronts. Eng. Anal. Bound. Elem. 103, 172–195 (2019). https://doi.org/10.1016/j.enganabound.2019.03.002

    MathSciNet  Google Scholar 

  12. Yousefi, H., Taghavi, A., Mahmoudzadeh, I.: Response of a spherical cavity in a fully-coupled thermo-poro-elastodynamic medium by cell-adaptive second-order central high resolution schemes. Undergr. Space 3, 206–217 (2018). https://doi.org/10.1016/j.undsp.2018.04.003

    Google Scholar 

  13. Zhang, X., Shu, C.W.: A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws. SIAM J. Numer. Anal. 48(2), 772–795 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Zhang, X., Shu, C.W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 467, pp. 2752–2776. The Royal Society (2011)

  16. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting, p. 366 (1989)

  17. Cueto-Felgueroso, L., Colominas, I.: High-order finite volume methods and multiresolution reproducing kernels. Arch. Comput. Methods Eng. 15(2), 185–228 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    MATH  Google Scholar 

  19. Popov, M.V., Ustyugov, S.D.: The piecewise parabolic method (PPM) for gas-dynamical simulations. Comput. Math. Math. Phys. 47(12), 1970–1989 (2007)

    MathSciNet  Google Scholar 

  20. Colella, P., Sekora, M.D.: A limiter for PPM that preserves accuracy at smooth extrema. Comput. Math. Math. Phys. 227(15), 7069–7076 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Rider, W.J., Margolin, L.G.: Simple modifications of monotonicity-preserving limiter. J. Comput. Phys. 174(1), 473–488 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Engwirda, D., Kelley, M.: A WENO-type slope-limiter for a family of piecewise polynomial methods. arXiv:1606.08188 (2016)

  23. Norman, M.R., Nair, R.D.: Inherently conservative nonpolynomial-based remapping schemes: application to semi-Lagrangian transport. Mon. Weather Rev. 136(12), 5044–5061 (2008)

    Google Scholar 

  24. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM Math. Model. Numer. Anal. 33(3), 547–571 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23(3), 276–299 (1977)

    MATH  Google Scholar 

  27. Rider, W.J.: Reconsidering remap methods. Int. J. Numer. Methods Fluids 76(9), 587–610 (2014)

    MathSciNet  Google Scholar 

  28. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions. J. Comput. Phys. 318, 222–251 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 63(2), 548–572 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Qiu, J., Shu, C.W.: Hermite WENO schemes for Hamilton–Jacobi equations. J. Comput. Phys. 204(1), 82–99 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67(3), 1219–1246 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Dumbser, M., Boscheri, W., Semplice, M., Russo, G.: Central WENO schemes for hyperbolic conservation laws on fixed and moving unstructured meshes. arXiv:1612.09335 (2016)

  33. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66(2), 692–724 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Verma, P.S., Müller, W.C.: Higher order finite volume central schemes for multi-dimensional hyperbolic problems. J. Sci. Comput. 75(2), 941–969 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227(5), 2977–3014 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comput. 87(312), 1689–1719 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Baeza, A., Bürger, R., Mulet, P., Zorío, D.: Central WENO schemes through a global average weight. J. Sci. Comput. 78(1), 499–530 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Cohen, A.: Numerical Analysis of Wavelet Methods, vol. 32. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  41. Alves, M.A., Cruz, P., Mendes, A., Magalhães, F.D., Pinho, F.T., Oliveira, P.J.: Adaptive multiresolution approach for solution of hyperbolic PDEs. Comput. Methods Appl. Mech. Eng. 191(36), 3909–3928 (2002). https://doi.org/10.1016/S0045-7825(02)00334-1

    MATH  Google Scholar 

  42. Santos, J.C., Cruz, P., Alves, M.A., Oliveira, P.J., Magalhães, F.D., Mendes, A.: Adaptive multiresolution approach for two-dimensional PDEs. Comput. Methods Appl. Mech. Eng. 193(3), 405–425 (2004)

    MATH  Google Scholar 

  43. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, vol. 27. Springer, Berlin (2012)

    Google Scholar 

  44. Müller, B.G., Müller, S.: Application of multiscale techniques to hyperbolic conservation laws. In: Computational Mathematics. Lecture Notes in Pure and Applied Mathematics, pp. 113–138 (1998)

  45. Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30(3), 493–531 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Holmström, M., Waldén, J.: Adaptive wavelet methods for hyperbolic PDEs. J. Sci. Comput. 13(1), 19–49 (1998)

    MathSciNet  MATH  Google Scholar 

  47. Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88(3), 399–443 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183–225 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Holmström, M.: Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci. Comput. 21(2), 405–420 (1999)

    MathSciNet  MATH  Google Scholar 

  50. Yousefi, H., Noorzad, A., Farjoodi, J.: Simulating 2D waves propagation in elastic solid media using wavelet based adaptive method. J. Sci. Comput. 42(3), 404–425 (2010). https://doi.org/10.1007/s10915-009-9328-7

    MathSciNet  MATH  Google Scholar 

  51. Yousefi, H., Noorzad, A., Farjoodi, J., Vahidi, M.: Multiresolution-based adaptive simulation of wave equation. Appl. Math. Inf. Sci. 6(1S), 47S–58S (2012)

    MATH  Google Scholar 

  52. Yousefi, H., Noorzad, A., Farjoodi, J.: Multiresolution based adaptive schemes for second order hyperbolic PDEs in elastodynamic problems. Appl. Math. Model. 37(12), 7095–7127 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Paolucci, S., Zikoski, Z.J., Wirasaet, D.: WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part I. Accuracy and efficiency of algorithm. J. Comput. Phys. 272, 814–841 (2014)

    MATH  Google Scholar 

  54. Paolucci, S., Zikoski, Z.J., Grenga, T.: WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part II. The parallel algorithm. J. Comput. Phys. 272, 842–864 (2014)

    MATH  Google Scholar 

  55. Tang, L., Song, S.: A multiresolution finite volume scheme for two-dimensional hyperbolic conservation laws. J. Comput. Appl. Math. 214(2), 583–595 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Bürger, R., Kozakevicius, A.: Adaptive multiresolution WENO schemes for multi-species kinematic flow models. J. Comput. Phys. 224(2), 1190–1222 (2007). https://doi.org/10.1016/j.jcp.2006.11.010

    MathSciNet  MATH  Google Scholar 

  57. Griebel, M., Koster, F.: Adaptive wavelet solvers for the unsteady incompressible Navier–Stokes equations. In: Advances in Mathematical Fluid Mechanics, pp. 67–118. Springer (2000)

  58. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)

    MathSciNet  MATH  Google Scholar 

  59. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Space–time adaptive multiresolution methods for hyperbolic conservation laws: applications to compressible Euler equations. Appl. Numer. Math. 59(9), 2303–2321 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Yousefi, H., Taghavi, A., Mahmoudzadeh, I.: Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Front. Struct. Civ. Eng. 13(2), 429–455 (2019)

    Google Scholar 

  61. Cruz, P., Mendes, A., Magalhaes, F.D.: Using wavelets for solving PDEs: an adaptive collocation method. Chem. Eng. Sci. 56(10), 3305–3309 (2001). https://doi.org/10.1016/S0009-2509(00)00551-0

    Google Scholar 

  62. Cruz, P., Mendes, A., Magalhães, F.D.: Wavelet-based adaptive grid method for the resolution of nonlinear PDEs. AIChE J. 48(4), 774–785 (2002)

    Google Scholar 

  63. Jameson, L., Miyama, T.: Wavelet analysis and ocean modeling: a dynamically adaptive numerical method ‘WOFD-AHO’. Mon. Weather Rev. 128(5), 1536–1549 (2000)

    Google Scholar 

  64. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  65. Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10(5), 1132 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Deiterding, R., Domingues, M.O., Gomes, S.M., Schneider, K.: Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations. SIAM J. Sci. Comput. 38(5), S173–S193 (2016)

    MathSciNet  MATH  Google Scholar 

  67. Artebrant, R., Schroll, H.J.: Conservative logarithmic reconstructions and finite volume methods. SIAM J. Sci. Comput. 27(1), 294–314 (2005)

    MathSciNet  MATH  Google Scholar 

  68. Artebrant, R., Schroll, H.J.: Limiter-free third order logarithmic reconstruction. SIAM J. Sci. Comput. 28(1), 359–381 (2006)

    MathSciNet  MATH  Google Scholar 

  69. Marquina, A.: Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15(4), 892–915 (1994)

    MathSciNet  MATH  Google Scholar 

  70. Xiao, F., Yabe, T., Peng, X., Kobayashi, H.: Conservative and oscillation-less atmospheric transport schemes based on rational functions. J. Geophys. Res. Atmos. 107(D22), 4609 (2002)

    Google Scholar 

  71. Ha, Y., Lee, Y.J., Yoon, J.: Modified essentially nonoscillatory schemes based on exponential polynomial interpolation for hyperbolic conservation laws. SIAM J. Numer. Anal. 51(2), 864–893 (2013)

    MathSciNet  MATH  Google Scholar 

  72. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Sixth-order weighted essentially nonoscillatory schemes based on exponential polynomials. SIAM J. Sci. Comput. 38(4), A1987–A2017 (2016)

    MathSciNet  MATH  Google Scholar 

  73. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: Basic formulation. J. Comput. Phys. 178(1), 210–251 (2002)

    MathSciNet  MATH  Google Scholar 

  74. Aboiyar, T., Georgoulis, E.H., Iske, A.: High order WENO finite volume schemes using polyharmonic spline reconstruction. In: Proceedings of the International Conference on Numerical Analysis and Approximation Theory, ClujNapoca, Romania, pp. 113–126 (2006)

  75. Iske, A., Sonar, T.: On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numer. Math. 74(2), 177–201 (1996)

    MathSciNet  MATH  Google Scholar 

  76. Sanders, R.: A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation laws. Math. Comput. 51(184), 535–558 (1988)

    MathSciNet  MATH  Google Scholar 

  77. Sanders, R., Weiser, A.: High resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws. J. Comput. Phys. 101(2), 314–329 (1992)

    MathSciNet  MATH  Google Scholar 

  78. Zahran, Y.H.: A central WENO-TVD scheme for hyperbolic conservation laws. Novi Sad J. Math. 36(2), 25–42 (2006)

    MathSciNet  MATH  Google Scholar 

  79. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    MATH  Google Scholar 

  80. van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974). https://doi.org/10.1016/0021-9991(74)90019-9

    MATH  Google Scholar 

  81. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    MathSciNet  MATH  Google Scholar 

  82. Van Albada, G., Van Leer, B., Roberts, W.: A comparative study of computational methods in cosmic gas dynamics. In: Upwind and High-Resolution Schemes, pp. 95–103. Springer (1997)

  83. Piperno, S., Depeyre, S.: Criteria for the design of limiters yielding efficient high resolution TVD schemes. Comput. Fluids 27(2), 183–197 (1998)

    MathSciNet  MATH  Google Scholar 

  84. Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Numerical Methods for Advection–Diffusion Problems. Vieweg (1993)

  85. Spekreijse, S.: Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws. Math. Comput. 49(179), 135–155 (1987)

    MathSciNet  MATH  Google Scholar 

  86. Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Chapman and Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  87. Jeng, Y.N., Payne, U.J.: An adaptive TVD limiter. J. Comput. Phys. 118(2), 229–241 (1995)

    MathSciNet  MATH  Google Scholar 

  88. Kemm, F.: A comparative study of TVD-limiterswell-known limiters and an introduction of new ones. Int. J. Numer. Methods Fluids 67(4), 404–440 (2011)

    MathSciNet  MATH  Google Scholar 

  89. Kemm, F.: CFL-number-dependent TVD-limiters. In: Numerical Methods for Hyperbolic Equations: Theory and Applications, pp. 277–283. CRC Press (2012). https://doi.org/10.1201/b14172-38

  90. Billet, G., Louedin, O.: Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. J. Comput. Phys. 170(1), 161–183 (2001)

    MATH  Google Scholar 

  91. Zeng, X.: A general approach to enhance slope limiters in MUSCL schemes on nonuniform rectilinear grids. SIAM J. Sci. Comput. 38(2), A789–A813 (2016)

    MathSciNet  MATH  Google Scholar 

  92. Dubey, R.K.: Flux limited schemes: their classification and accuracy based on total variation stability regions. Appl. Math. Comput. 224, 325–336 (2013)

    MathSciNet  MATH  Google Scholar 

  93. Yee, H.: Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys. 68(1), 151–179 (1987). https://doi.org/10.1016/0021-9991(87)90049-0

    MathSciNet  MATH  Google Scholar 

  94. Rider, W.J.: A comparison of TVD Lax–Wendroff methods. Commun. Numer. Methods Eng. 9(2), 147–155 (1993)

    MATH  Google Scholar 

  95. Zhang, D., Jiang, C., Liang, D., Cheng, L.: A review on TVD schemes and a refined flux-limiter for steady-state calculations. J. Comput. Phys. 302, 114–154 (2015)

    MathSciNet  MATH  Google Scholar 

  96. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    MathSciNet  MATH  Google Scholar 

  97. Shu, C.W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49(179), 105–121 (1987)

    MathSciNet  MATH  Google Scholar 

  98. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  99. Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    MathSciNet  MATH  Google Scholar 

  100. Tokareva, S.: A problem-independent slope limiting algorithm for the Runge–Kutta discontinuous Galerkin method. Comput. Methods Appl. Math. 10(3), 326–342 (2010)

    MathSciNet  MATH  Google Scholar 

  101. Hoteit, H., Ackerer, P., Mosé, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int. J. Numer. Methods Eng. 61(14), 2566–2593 (2004)

    MathSciNet  MATH  Google Scholar 

  102. Jameson, A.: Analysis and design of numerical schemes for gas dynamics. 2: Artificial diffusion and discrete shock structure. Int. J. Comput. Fluid Dyn. 5(1–2), 1–38 (1995)

    Google Scholar 

  103. Čada, M., Torrilhon, M.: Compact third-order limiter functions for finite volume methods. J. Comput. Phys. 228(11), 4118–4145 (2009)

    MathSciNet  MATH  Google Scholar 

  104. Schmidtmann, B., Abgrall, R., Torrilhon, M.: On third-order limiter functions for finite volume methods. Bull. Braz. Math. Soc. (New Ser.) 47(2), 753–764 (2016)

    MathSciNet  MATH  Google Scholar 

  105. Donoho, D.L.: Interpolating Wavelet Transforms, vol. 2(3). Department of Statistics, Stanford University, Stanford (1992). (Preprint)

    Google Scholar 

  106. Kurganov, A., Levy, D.: A third-order semidiscrete central scheme for conservation laws and convection–diffusion equations. SIAM J. Sci. Comput. 22(4), 1461–1488 (2000)

    MathSciNet  MATH  Google Scholar 

  107. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    MathSciNet  MATH  Google Scholar 

  108. Tadmor, E.: Convenient total variation diminishing conditions for nonlinear difference schemes. SIAM J. Numer. Anal. 25(5), 1002–1014 (1988)

    MathSciNet  MATH  Google Scholar 

  109. Osher, S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22(5), 947–961 (1985)

    MathSciNet  MATH  Google Scholar 

  110. Berger, M., Aftosmis, M.J., Murman, S.M.: Analysis of slope limiters on irregular grids. In: 43rd AIAA Aerospace Science Meeting (2005)

  111. Bigoni, C., Hesthaven, J.S.: Adaptive WENO methods based on radial basis function reconstruction. J. Sci. Comput. 72(3), 986–1020 (2017)

    MathSciNet  MATH  Google Scholar 

  112. Fjordholm, U.S., Ray, D.: A sign preserving WENO reconstruction method. J. Sci. Comput. 68(1), 42–63 (2016)

    MathSciNet  MATH  Google Scholar 

  113. Waldén, J.: Filter bank methods for hyperbolic PDEs. SIAM J. Numer. Anal. 36(4), 1183–1233 (1999)

    MathSciNet  MATH  Google Scholar 

  114. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    MathSciNet  MATH  Google Scholar 

  115. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    MathSciNet  MATH  Google Scholar 

  116. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

    MathSciNet  MATH  Google Scholar 

  117. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  118. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32–78 (1989)

    MathSciNet  MATH  Google Scholar 

  119. Lie, K.A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24(4), 1157–1174 (2003)

    MathSciNet  MATH  Google Scholar 

  120. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432. Springer (1998)

  121. Kurganov, A., Petrova, G.: Central schemes and contact discontinuities. ESAIM Math. Model. Numer. Anal. 34(06), 1259–1275 (2000)

    MathSciNet  MATH  Google Scholar 

  122. Kurganov, A., Lin, C.T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2(1), 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  123. Kriel, A.J.: Error analysis of flux limiter schemes at extrema. J. Comput. Phys. 328, 371–386 (2017)

    MathSciNet  MATH  Google Scholar 

  124. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Sci. Comput. 150(1), 97–127 (1999)

    MathSciNet  MATH  Google Scholar 

  125. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984). https://doi.org/10.1016/0021-9991(84)90142-6

    MathSciNet  MATH  Google Scholar 

  126. Rider, W.J., Greenough, J.A., Kamm, J.R.: Accurate monotonicity-and extrema-preserving methods through adaptive nonlinear hybridizations. J. Comput. Phys. 225(2), 1827–1848 (2007)

    MathSciNet  MATH  Google Scholar 

  127. Kemm, F.: On the proper setup of the double mach reflection as a test case for the resolution of gas dynamics codes. Comput. Fluids 132, 72–75 (2016)

    MathSciNet  MATH  Google Scholar 

  128. Balaguer, Á., Conde, C.: Fourth-order nonoscillatory upwind and central schemes for hyperbolic conservation laws. SIAM J. Numer. Anal. 43(2), 455–473 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of High Performance Computing Lab, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran. Also, the authors would like to acknowledge the financial support of Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Yousefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Let us assume a scalar conservation law \(u_t + F(u)_x = 0\). In the following, fully-discrete and semi-discrete forms of third-order central high resolution schemes will be provided on non-uniform grids with non-centered cell-centers. At first, the fully-discrete form is derived and accordingly the semi-discrete form will be evaluated in the limit state \(\varDelta t \rightarrow 0\) [106].

1.1 A.1 The Fully-Discrete Form

For deriving the fully-discrete form, the three stages of reconstruction-evolution-projection will be followed [114].

1.1.1 A.1.1 The Reconstruction Stage

A piece-wise polynomial is assumed to be in cell \(I_j\) and time \(t^n:= n \varDelta t\) as: \(P_j (x,t^n)=A_j+B_j (x-\bar{x}_j) + \frac{1}{2} C_j (x-\bar{x}_j)^2\), where \(\bar{x}_j = \left( x_{j+1/2} + x_{j-1/2} \right) /2\).

1.1.2 A.1.2 The Evolution Stage

It is assumed that the cell center \(x_j\) is not located in the middle of the cell \(I_j\). The location of \(x_j\) can be determined from cell edges \(x_{j \pm 1/2}\) as:  \(x_{j+1/2} := x_j + p_j \varDelta x_j\) and \( x_{j-1/2} := x_j - \left( 1-p_j \right) \varDelta x_j \). Spatial locations \(x_{j \pm 1/2,l}^n\) and \(x_{j \pm 1/2,r}^n\) are also defined as: \(x_{j \pm 1/2,l}^n := x_{j \pm 1/2}^n - a_{j \pm 1/2}^n \varDelta t\) and \(x_{j \pm 1/2,r}^n := x_{j \pm 1/2}^n + a_{j \pm 1/2}^n \varDelta t\). The parameter \(a_{j+1/2}^n\) shows the upper bound of propagating speed of a possible discontinuity at the cell edge \(x_{j+1/2}\) [114].

The evaluation stage (from \(t^n\) to \(t^{n+1}\)) can be performed by the integration of \(u_t + F(u)_x = 0\), over spatio-temporal domains  \(\left[ x_{j+1/2,l}^n,x_{j+1/2,r}^n\right] \times \left[ t^n,t^{n+1}\right] \),  \(\left[ x_{j-1/2,r}^n,x_{j+1/2,l}^n\right] \times \left[ t^n,t^{n+1}\right] \) and  \(\left[ x_{j-1/2,l}^n,x_{j-1/2,r}^n\right] \times \left[ t^n,t^{n+1}\right] \). The first and the third domains are around cell edges and contain non-smooth solutions (with possible discontinuities) and the second one involves a smooth response. By integrating over above-mentioned three spatio-temporal volumes, evolved solutions can be expresses as follows.

  1. 1.

    Integral over the spatio-temporal intervals \(\left[ x_{j+1/2,l}^n,x_{j+1/2,r}^n\right] \times \left[ t^n,t^{n+1}\right] \)

    $$\begin{aligned} \begin{aligned} \bar{\omega }_{j+\frac{1}{2}}^{n+1} =\,&\frac{1}{x_{j+1/2,r}^n - x_{j+1/2,l}^n} \\&\left[ \int _{x_{j+1/2,l}^n}^{x_{j+1/2}^n} P_j^n (x) dx + \int _{x_{j+1/2}^n}^{x_{j+1/2,r}^n} P_{j+1}^n (x) dx - \int _{t^n}^{t^{n+1}} \left( F\left( u_{j+1/2,r}^n \right) - F\left( u_{j+1/2,l}^n \right) \right) dt \right] \\ = \,&\frac{1}{2} \left( A_j+A_{j+1}\right) \\&+ \frac{1}{4} \left[ \varDelta \text {t} a_{j+\frac{1}{2}}^n \left( B_{j+1}-B_j\right) +2 \left( B_j \varDelta \text {x}_j p_j+B_{j+1} \left( \varDelta \text {x}_j p_j+x_j-x_{j+1}\right) \right) \right] \\&+ \frac{1}{12} \left[ \varDelta \text {t}^2 \left( a_{j+\frac{1}{2}}^n \right) ^2 \left( C_j+C_{j+1}\right) + 3 \varDelta \text {t} a_{j+\frac{1}{2}}^n \left( C_{j+1} \left( \varDelta \text {x}_j p_j+x_j-x_{j+1}\right) -C_j \varDelta \text {x}_j p_j\right) \right. \\&+\, \left. 3 \left( C_j \varDelta \text {x}_j^2 p_j^2+C_{j+1} \left( \varDelta \text {x}_j p_j+x_j-x_{j+1}\right) {}^2\right) \right] \\&- \frac{1}{2 a^n_{j+1/2} \varDelta t} \left[ \int _{t^n}^{t^{n+1}} \left\{ F\left( u \left( x_{j+1/2,r}^n \right) \right) - F\left( u \left( x_{j+1/2,l}^n \right) \right) \right\} dt \right] . \end{aligned} \end{aligned}$$
    (A.1)
  2. 2.

    Integral over the spatio-temporal intervals \(\left[ x_{j-1/2,r}^n,x_{j+1/2,l}^n\right] \times \left[ t^n,t^{n+1}\right] \)

    $$\begin{aligned} \bar{\omega }_j^{n+1}&= \frac{1}{x_{j+1/2,l}^n - x_{j-1/2,r}^n} \left[ \int _{x_{j-1/2,r}^n}^{x_{j+1/2,l}^n} P_j^n (x) dx - \int _{t^n}^{t^{n+1}} \left( F\left( u_{j+1/2,l}^n \right) - F\left( u_{j-1/2,r}^n \right) \right) dt \right] \nonumber \\&= A_j + \frac{1}{2} B_j \left[ \varDelta \text {t} \left( a_{j-\frac{1}{2}}^n-a_{j+\frac{1}{2}}^n \right) +\varDelta \text {x}_j \left( 2 p_j-1\right) \right] \nonumber \\&\quad +\,\frac{1}{6} C_j \left[ \varDelta \text {t}^2 \left( \left( a_{j-\frac{1}{2}}^n \right) ^2+ \left( a_{j+\frac{1}{2}}^n \right) ^2 \right) -\varDelta \text {t} a_{j-\frac{1}{2}}^n \left( \varDelta \text {t} a_{j+\frac{1}{2}}^n +\varDelta \text {x}_j \left( 2-3 p_j\right) \right) \right. \nonumber \\&\quad \left. +\, a_{j+\frac{1}{2}}^n \varDelta \text {t} \varDelta \text {x}_j \left( 1-3 p_j\right) +\varDelta \text {x}_j^2 \left( 3 p_j^2-3 p_j+1\right) \right] \nonumber \\&\quad - \frac{1}{\varDelta x_j - \left( a^n_{j-1/2} + a^n_{j+1/2} \right) \varDelta t} \left[ \int _{t^n}^{t^{n+1}} \left\{ F\left( u \left( x_{j+1/2,l}^n \right) \right) - F\left( u \left( x_{j-1/2,r}^n \right) \right) \right\} dt \right] . \end{aligned}$$
    (A.2)
  3. 3.

    Integral over the spatio-temporal intervals \(\left[ x_{j-1/2,l}^n,x_{j-1/2,r}^n\right] \times \left[ t^n,t^{n+1}\right] \) This is can be evaluated similar to the case with the volume \(\left[ x_{j+1/2,l}^n,x_{j+1/2,r}^n\right] \times \left[ t^n,t^{n+1}\right] \).

1.1.3 A.1.3 The Projection Stage

After evaluating the average evolved solutions \(\bar{\omega }_{j+\frac{1}{2}}^{n+1}\)\(\bar{\omega }_{j}^{n+1}\) and \(\bar{\omega }_{j-\frac{1}{2}}^{n+1}\) (from Eqs. (A.1) and (A.2)), a third order average interpolating piece-wise function with the non-oscillatory feature can be reconstructed. Such piece-wise functions \(\tilde{\omega }_{j}^{n+1}(x)\) and \(\tilde{\omega }_{j+\frac{1}{2}}^{n+1}(x)\) are defined as:

$$\begin{aligned} \begin{aligned} \tilde{\omega }_{j+1/2}^{n+1}(x)=&\tilde{A}_{j+1/2}+ \tilde{B}_{j+1/2} (x-x_j) + \frac{1}{2} \tilde{C}_{j+1/2} (x-x_j)^2, \quad x \in (x_{j+1/2,l}^n,x_{j+1/2,r}^n), \\ \tilde{\omega }_{j}^{n+1}(x)=&\bar{\omega }_{j}^{n+1},\quad x \in (x_{j-1/2,r}^n,x_{j+1/2,l}^n). \end{aligned} \end{aligned}$$
(A.3)

The projected solution \(\bar{u}_j^{n+1}\) at time \(t^{n+1}\) can be obtained by a projection step,

$$\begin{aligned} \begin{aligned} \bar{u}_j^{n+1}&= \frac{1}{\varDelta x_j} \left[ \int _{x_{j-1/2}}^{x_{j-1/2,r}} \tilde{\omega }_{j-1/2}^{n+1}(x) dx + \int _{x_{j-1/2,r}}^{x_{j+1/2,l}} \tilde{\omega }_{j}^{n+1}(x) dx + \int _{x_{j+1/2,l}}^{x_{j+1/2}} \tilde{\omega }_{j+1/2}^{n+1}(x) dx \right] \\&= \bar{\omega }_j^{n+1} \left[ 1-\bar{\lambda } _j \left( a_{j-\frac{1}{2}}^n+a_{j+\frac{1}{2}}^n\right) \right] + \bar{\lambda } _j \left[ \tilde{A}_{j-\frac{1}{2}} a_{j-\frac{1}{2}}^n+\tilde{A}_{j+\frac{1}{2}} a_{j+\frac{1}{2}}^n\right] \\&\quad +\frac{1}{2} \varDelta \text {t} \bar{\lambda }_j \left[ \tilde{B}_{j-\frac{1}{2}} \left( a_{j-\frac{1}{2}}^{n}\right) ^2 -\tilde{B}_{j+\frac{1}{2}} \left( a_{j+\frac{1}{2}}^{n}\right) ^2 \right] \\&\quad +\frac{1}{6} \varDelta \text {t}^2 \bar{\lambda }_j \left[ \tilde{C}_{j-\frac{1}{2}} \left( a_{j-\frac{1}{2}}^{n}\right) ^3 + \tilde{C}_{j+\frac{1}{2}} \left( a_{j+\frac{1}{2}}^{n}\right) ^3 \right] , \end{aligned} \end{aligned}$$
(A.4)

where \(\bar{\lambda }_j := \frac{\varDelta t}{\varDelta x_j}\).

1.2 A.2 The Semi-discrete Form

Based on the fully-discrete form (Eq. (A.4)), the semi-discrete form can be obtained as:

$$\begin{aligned} \begin{aligned} \frac{d}{dt} \bar{u}_j(t) = \underset{\varDelta t \rightarrow 0}{\text {lim}} \frac{\bar{u}_j^{n+1} - \bar{u}_j^{n}}{ \varDelta t}. \end{aligned} \end{aligned}$$
(A.5)

This yields to:

$$\begin{aligned} \frac{d}{dt} \bar{u}_j(t)&= \underset{\varDelta t \rightarrow 0}{\text {lim}} \left\{ \frac{1}{\varDelta \text {t}} \left( \bar{\omega }_j^{n+1} - \bar{u}_j^n\right) - \frac{ 1 }{ \varDelta \text {x}_j} \left( a_{j-\frac{1}{2}}^n + a_{j+\frac{1}{2}}^n \right) \bar{\omega }_j^{n+1}+\frac{1}{\varDelta \text {x}_j} \left( \tilde{A}_{j-\frac{1}{2}} a_{j-\frac{1}{2}}^n+\tilde{A}_{j+\frac{1}{2}} a_{j+\frac{1}{2}}^n \right) \right. \nonumber \\&\quad \left. +~\frac{1}{2} \bar{\lambda }_j \left[ \tilde{B}_{j-\frac{1}{2}} \left( a_{j-\frac{1}{n}}^{2} \right) ^2 - \tilde{B}_{j+\frac{1}{2}} \left( a_{j+\frac{1}{n}}^{2} \right) ^2 \right] + \frac{1}{6} \varDelta \text {t} \bar{\lambda }_j \left[ \tilde{C}_{j-\frac{1}{2}} \left( a_{j-\frac{1}{2}}^{n} \right) ^3\right. \right. \nonumber \\&\quad \left. \left. +~\tilde{C}_{j+\frac{1}{2}} \left( a_{j+\frac{1}{2}}^{n} \right) ^3 \right] \right\} . \end{aligned}$$
(A.6)

Since \(\varDelta t \rightarrow 0\), the widths of all the Riemann fans approach zero, then:

$$\begin{aligned} \begin{aligned} \tilde{A}_{j-\frac{1}{2}} \rightarrow \bar{\omega }_{j-1/2}^{n+1}, \quad \tilde{A}_{j+\frac{1}{2}} \rightarrow \bar{\omega }_{j+1/2}^{n+1}, \end{aligned} \end{aligned}$$
(A.7)

and from the parabolic polynomial \(P_j (x,t^n)\) in the reconstruction stage (Sect. A.1.1):

$$\begin{aligned} \begin{aligned} u(x_{j+1/2,r}^n,t)&\rightarrow P_{j+1}(x_{j+1/2},t) \\&= A_{j+1} - B_{j+1} \left( (1-p_{j+1}) \varDelta x_{j+1} \right) + \frac{1}{2} C_{j+1} ((1-p_{j+1}) \varDelta x_{j+1})^2 =: u_{j+1/2}^R, \\ u(x_{j+1/2,l}^n,t)&\rightarrow P_{j}(x_{j+1/2},t) \\&= A_{j} + B_{j} \left( p_{j} \varDelta x_{j} \right) + \frac{1}{2} C_{j+1} (p_{j} \varDelta x_{j})^2 =: u_{j+1/2}^L. \end{aligned} \end{aligned}$$
(A.8)

Substituting Eqs. (A.1), (A.2), (A.7) and (A.8) into Eq. (A.6), this equation leads to:

$$\begin{aligned} \begin{aligned} \frac{d}{dt} \bar{u}_j(t)&= - \frac{1}{2 \varDelta x_j} \left[ F\left( u_{j+1/2}^R(t) \right) + F\left( u_{j+1/2}^L(t) \right) - F\left( u_{j-1/2}^R(t) \right) - F\left( u_{j-1/2}^L(t) \right) \right] \\&\quad + \frac{a_{j+1/2}^n}{2 \varDelta x_j} \left[ u_{j+1/2}^R(t) - u_{j+1/2}^L(t) \right] - \frac{a_{j-1/2}^n}{2 \varDelta x_j} \left[ u_{j-1/2}^R(t) - u_{j-1/2}^L(t) \right] . \end{aligned} \end{aligned}$$
(A.9)

The semi-discrete form (A.9) can then be rewritten as:

$$\begin{aligned} \begin{aligned} \frac{d}{dt} \bar{u}_j(t) + \frac{F^*_{j+1/2}-F^*_{j-1/2}}{\varDelta x_j} =0, \end{aligned} \end{aligned}$$
(A.10)

where \(F^*_{j \pm 1/2} := F^* \left( u_{j \pm 1/2} \right) \) and

$$\begin{aligned} \begin{aligned} F^*_{j \pm 1/2} := \frac{F\left( u_{j \pm 1/2}^R(t) \right) + F\left( u_{j \pm 1/2}^L(t) \right) }{2} - \frac{a_{j \pm 1/2}^n}{2} \left[ u_{j \pm 1/2}^R(t) - u_{j \pm 1/2}^L(t) \right] . \end{aligned} \end{aligned}$$
(A.11)

Appendix B

In this Appendix, properties 1 through 4 are derived which are mentioned in Sect. 4.1.

It is clear that features (1) and (2) are satisfied. Having the same shape means if cell averages are locally monotone, \(q_j(x)\) is also monotone in those cells; e.g.: if  \(\bar{u}_{j-1} \le \bar{u}_j \le \bar{u}_{j+1}\) then \(q_j(x)\) is increasing and vice-versa. Also, in an extremum cell, the function \(q_j(x)\) has an extremum. Aforementioned properties will be confirmed in the following. In all calculations, it is assumed that \(0.5<a<2\) and \(0.5<b<2\). This is because of the multiresolution-based grid-adaptation and also the post-processing stage of grid adaptations, presented in Sect. 4.

1.1 B.1 The Same Shape Feature

The first derivative of \(q_j(x)\) (\(q'_j(x)\)) can be evaluated as:

$$\begin{aligned} \begin{aligned} q'_j(x)&= \frac{ \left[ \varDelta x_j \left( 2 a+1\right) + 6 \left( x - \bar{x}_j \right) \right] }{2 \varDelta x_j (a+b+1)} \frac{2 \varDelta u_j^+}{\left( 1+b \right) \varDelta x_j } + \frac{ \left[ \varDelta x_j \left( 2 b+1\right) - 6 \left( x - \bar{x}_j \right) \right] }{2 \varDelta x_j (a+b+1)} \frac{2 \varDelta u_j^- }{\left( 1+a \right) \varDelta x_j} . \end{aligned} \end{aligned}$$
(B.1)

This equation can be written as:

$$\begin{aligned} \begin{aligned} q'_j(x)= \left( g_1 (x)+g_2 (x) \right) / \left( \varDelta x_j^2 (a+1)(b+1)(a+b+1) \right) , \end{aligned} \end{aligned}$$
(B.2)

where

$$\begin{aligned} \begin{aligned} g_1 (x) = (a+1) \left[ \varDelta x_j \left( 2 a+1\right) + 6 \left( x - \bar{x}_j \right) \right] \varDelta u_j^+, \\ g_2(x) = (b+1) \left[ \varDelta x_j \left( 2 b+1\right) - 6 \left( x - \bar{x}_j \right) \right] \varDelta u_j^-. \end{aligned} \end{aligned}$$
(B.3)

In the following, \(q_j(x)\) with monotone variations (increasing and decreasing cell averages) and the same shape feature around extremum points will be studied.

Fig. 29
figure 29

Different variation patterns over three successive cells \(\left\{ I_j \right\} \)

Case I: Increasing cell averages For the monotone increasing case, i.e.: \(\varDelta u_j^ \pm \ge 0\), two variation patterns are considerable: convex (Fig. 29a) and concave increasing cases (Fig. 29b):

  1. 1.

    The convex increasing: In this case (Fig. 29a) \(a \ge 1\) and  \(b \le 1\) and \(\varDelta u_j^+ > \varDelta u_j^- \): due to a proper cell adaptation and convex variation of cell averages. It should be shown that for \(x \in I_j\), we have  \(q'_j(x) > 0\). Since both \(g_1(x)\) and  \(g_2(x)\) are linear, \(g_1(x)+g_2(x)\) is also linear. So, if \(q'_j(x)\) at points \(x_{i \pm 1/2}\) are positive, then \(q'_j(x)\) is also positive for \(x \in I_j\):

    1. (a)

      Controlling of \(q'_j(x_{j - 1/2})\): Since \(x_{j-1/2}-x_j = - \varDelta x_j/2\)\(a \ge 1\) and \(b \le 1\), then \(g_1(x_{j-1/2}) \ge 0\) and \(g_2(x_{j-1/2}) \ge 0\); therefore \(q'_j(x_{j - 1/2}) \ge 0 \).

    2. (b)

      Controlling of \(q'_j(x_{j + 1/2})\): Since \(x_{j+1/2}-x_j = \varDelta x_j/2\)\(a \ge 1\) and \(b \le 1\), then \(g_1(x_{j+1/2}) \ge 0\)\(g_2(x_{j+1/2}) \le 0\) and \(g_1(x_{j+1/2}) \ge \left| g_2(x_{j+1/2}) \right| \); therefore \(q'_j(x_{j + 1/2}) \ge 0 \).

    So, for the convex increasing of \(\left\{ \bar{u}_i: ~ i=j-1,j,j+1 \right\} \)\(q_j(x)\) will remain monotone increasing.

  2. 2.

    The concave increasing: For this case (Fig. 29b), we have: \(b \ge 1\)\(a \le 1\) and \(\varDelta u_j^+ < \varDelta u_j^- \):

    1. (a)

      At the point \(x_{j-1/2}\), it is easy to show that: \(g_1(x_{j-1/2}) \le 0\)\(g_2(x_{j-1/2}) \ge 0\) and \( | g_2(x_{j-1/2}) | \ge | g_1(x_{j-1/2}) |\); hence \(q'_j(x_{j-1/2}) \ge 0\),

    2. (b)

      At the point \(x_{j+1/2}\)\(g_1(x_{j+1/2}) \ge 0\) and \(g_2(x_{j+1/2}) \ge 0\); so, \(q'_j(x_{j+1/2}) \ge 0\).

    Hence, \(q'_j(x) \ge 0\) for \(x \in I_j\).

Case II: Decreasing cell averages In this case, for a monotone decreasing we have \(\varDelta u_j^ \pm \le 0\). And again convex (Fig. 29c) and concave decreasing (Fig. 29d) cases are possible:

  1. 1.

    The convex decreasing: For this case (Fig. 29c), we have: \(b \ge 1\)\(a \le 1\) and \( \left| \varDelta u_j^- \right| \ge \left| \varDelta u_j^+ \right| \):

    1. (a)

      At the point \(x_{j-1/2}\), it is easy to show that: \(g_1(x_{j-1/2}) \ge 0\)\(g_2(x_{j-1/2}) \le 0\) and  \( | g_2(x_{j-1/2}) | \ge | g_1(x_{j-1/2}) |\); hence \(q_j'(x_{j-1/2}) \le 0\).

    2. (b)

      At the point \(x_{j+1/2}\)\(g_1(x_{j+1/2}) \le 0\) nd \(g_2(x_{j+1/2}) \le 0\); so \(q'_j(x_{j+1/2}) \le 0\).

    In this regard, \(q'_j(x) \le 0\) for \(x \in I_j\).

  2. 2.

    The concave decreasing: For this case (Fig. 29d), we have: \(a \ge 1\)\(b \le 1\) and \( \left| \varDelta u_j^- \right| \le \left| \varDelta u_j^+ \right| \); therefore:

    1. (a)

      At the point \(x_{j-1/2}\)\(g_1(x_{j-1/2}) \le 0\) and \(g_2(x_{j-1/2}) \le 0\); so: \(q'_j(x_{j-1/2}) \le 0\),

    2. (b)

      At the point \(x_{j+1/2}\)\(g_1(x_{j+1/2}) \le 0\)\(g_2(x_{j+1/2}) \ge 0\) and \( | g_1(x_{j+1/2}) | \ge | g_2(x_{j+1/2}) |\); hence: \(q'_j(x_{j+1/2}) \le 0\).

    So, in general: \(q'_j(x) \le 0\) for \(x \in I_j\).

Case III: Extrema points In these points, due to the cell adaptation, \(a \rightarrow 1\) and \(b \rightarrow 1\); therefor,therefore it is easy to show that:

$$\begin{aligned} \begin{aligned} q'_j(x) = \frac{\left( u'\right) _j^- \left[ \varDelta x_j-2 (x-x_j) \right] + \left( u'\right) _j^+ \left[ \varDelta x_j + 2 (x-x_j) \right] }{2 \varDelta x_j}. \end{aligned} \end{aligned}$$
(B.4)

Hence in the cell edges \(x_{j \pm 1/2}\), the function \(q'_j(x)\) becomes: \(q'_j(x_{j-1/2}) = \left( u' \right) _j^- \) and \(q' _j(x_{j+1/2}) = \left( u' \right) _j^+ \). Therefore \(q'_j(x_{j-1/2}).q' _j(x_{j+1/2}) = (\bar{u}_j-\bar{u}_{j-1}) (\bar{u}_{j+1}-\bar{u}_{j}) / \left[ \frac{1}{4} (1+a) (1+b) \varDelta x_j^2 \right] \):  \(q_j(x)\) has the same shape of cell-averages \(\left\{ \bar{u}_i \right\} \).

1.2 B.2 The Fourth Property

  1. 1.

    The maximum cell: At the two edges of \(I_j\), the fourth property (in Sect. 4) is controlled:

    1. (a)

      Controlling at \(x=x_{j-1/2}\): The density of an adapted grid increases by approaching to the maximum point \(x_j\) from the left side. As a result: \(a \ge 1\)\( b \ge 1\)\(\varDelta u_j^- \ge 0\) and \(\varDelta u_j^+ \le 0\); therefore:

      $$\begin{aligned} \begin{aligned} \delta _{j-1/2}^{(max)} := q(x_{j-1/2})- \frac{\bar{u}_{j}+a \bar{u}_{j-1}}{1+a} = \frac{(b+1) \left( a^2+ (b+1) (a-1)\right) \varDelta u_j^- - a (a+1) \varDelta u_j^+}{(a+1) (b+1) (a+b+1)}. \end{aligned} \end{aligned}$$
      (B.5)

      It is clear that \(\delta _{j-1/2}^{(max)} > 0\).

    2. (b)

      Controlling at \(x=x_{j+1/2}\): For this case, it is obvious that: \(a \ge 1\)\( b \ge 1\)\(\varDelta u_j^- \ge 0\) and \(\varDelta u_j^+ \le 0\). So,

      $$\begin{aligned} \begin{aligned} \delta _{j+1/2}^{(max)} := q(x_{j+1/2})- \frac{\bar{u}_{j+1}+b \bar{u}_{j}}{1+b} = \frac{b \left( -(a+1) \varDelta u^+_j + (b+1) \varDelta u^-_j \right) }{(a+1) (b+1) (a+b+1)}. \end{aligned} \end{aligned}$$
      (B.6)

      It is clear that \(\delta _{j+1/2}^{(max)} > 0\).

  2. 2.

    The minimum cell: Controlling at \(x=x_{j-1/2}\) and \(x=x_{j+1/2}\). It is straightforward to show that:

    $$\begin{aligned} \begin{aligned} \delta _{j-1/2}^{(min)} := q(x_{j-1/2})- \frac{\bar{u}_{j}+a \bar{u}_{j-1}}{1+a} = - \delta _{j-1/2}^{(max)}, \\ \delta _{j+1/2}^{(min)} := q(x_{j+1/2})- \frac{\bar{u}_{j+1}+b \bar{u}_{j}}{1+b} = - \delta _{j+1/2}^{(max)}. \end{aligned} \end{aligned}$$
    (B.7)

    It is clear that \(\delta _{j-1/2}^{(min)} < 0\) and \(\delta _{j+1/2}^{(min)} < 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, H., Mohammadi, S. & Rabczuk, T. Multiscale Polynomial-Based High-Order Central High Resolution Schemes. J Sci Comput 80, 555–613 (2019). https://doi.org/10.1007/s10915-019-00949-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00949-8

Keywords

Navigation