Skip to main content
Log in

Second Order Linear Energy Stable Schemes for Allen-Cahn Equations with Nonlocal Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a set of linear, second order, unconditionally energy stable schemes for the Allen-Cahn equation with nonlocal constraints that preserves the total volume of each phase in a binary material system. The energy quadratization strategy is employed to derive the energy stable semi-discrete numerical algorithms in time. Solvability conditions are then established for the linear systems resulting from the semi-discrete, linear schemes. The fully discrete schemes are obtained afterwards by applying second order finite difference methods on cell-centered grids in space. The performance of the schemes are assessed against two benchmark numerical examples, in which dynamics obtained using the volume-preserving Allen-Cahn equations with nonlocal constraints is compared with those obtained using the classical Allen-Cahn as well as the Cahn-Hilliard model, respectively, demonstrating slower dynamics when volume constraints are imposed as well as their usefulness as alternatives to the Cahn–Hilliard equation in describing phase evolutionary dynamics for immiscible material systems while preserving the phase volumes. Some performance enhancing, practical implementation methods for the linear energy stable schemes are discussed in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  3. Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics, vol. 73. Oxford University Press, Oxford (1988)

    Google Scholar 

  5. Leslie, F.M.: Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 1–81 (1979)

    Article  Google Scholar 

  6. Gong, Y., Zhao, J., Yang, X., Wang, Q.: Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities. SIAM J. Sci. Comput. 40(1), B138–B167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pethrick, R.A.: The theory of polymer dynamics m. doi and s. f. edwards, oxford university press. J. Chem. Technol. Biotechnol. 44(1), 79–80 (1988)

    Google Scholar 

  8. Gong, Y., Zhao, J., Wang, Q.: Linear second order in time energy stable schemes for hydrodynamic models of binary mixtures based on a spatially pseudospectral approximation. Adv. Comput. Math. 44(5), 1573–1600 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, X., Lili, J.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017)

    Article  MathSciNet  Google Scholar 

  10. Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)

    Article  MathSciNet  Google Scholar 

  11. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, X., Gong, Y., Li, J., Zhao, J., Wang, Q.: On hydrodynamic phase field models for binary fluid mixtures. Theor. Comput. Fluid Dynam. 32(5), 1–24 (2017)

    MathSciNet  Google Scholar 

  14. Cheng, Y., Kurganov, A., Zhuolin, Q., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, R., Yan, X.: Local discontinuous galerkin method and high order semi-implicit scheme for the phase field crystal equation. SIAM J. Sci. Comput. 38(1), A105–A127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qiang, D., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, H., Lili, J., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with peng-robinson equation of state. J. Sci. Comput. 75(2), 993–1015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rubinstein, J., Sternberg, P.: Nonlocal reaction diffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218(1), 417–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mellenthin, J., Karma, A., Plapp, M.: Phase-field crystal study of grain-boundary premelting. Phys. Rev. B 78(18), 184110 (2008)

    Article  Google Scholar 

  21. Guillén-González, F., Tierra, G.: On linear schemes for a cahn-hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, D., Qiao, Z.: On second order semi-implicit fourier spectral methods for 2d cahn-hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fan, X., Kou, J., Qiao, Z., Sun, S.: A componentwise convex splitting scheme for diffuse interface models with van der waals and peng-robinson equations of state. SIAM J. Sci. Comput. 39(1), B1–B28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eyre, D.J.: Unconditionally gradient stable time marching the cahn-hilliard equation. MRS online proceedings library archive, 529 (1998)

  26. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with ehrlich-schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28(1), 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for cahn-hilliard-navier-stokes equation. J. Comput. Phys. 290, 139–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chuanju, X., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Yang, X.: Numerical approximations of allen-cahn and cahn-hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, W., Han, D., Wang, X.: Uniquely solvable and energy stable decoupled numerical schemes for the cahn-hilliard-stokes-darcy system for two-phase flows in karstic geometry. Numer. Math. 137(1), 229–255 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, L., Yu, H.: On efficient second order stabilized semi-implicit schemes for the cahn-hilliard phase-field equation. J. Sci. Comput. 77(2), 1–25 (2017)

    MathSciNet  Google Scholar 

  33. Qiang, D., Lili, J., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal cahn-hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, L., Yu, H.: Energy stable second order linear schemes for the allen-cahn phase-field equation. arXiv preprint arXiv:1807.03171 (2018)

  35. Zhao, J., Yang, X., Gong, Y., Zhao, X., Yang, X., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part i: thermodynamical systems. Int. J. Numer. Anal. Model. 15(6), 884–918 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. arXiv preprint arXiv:1710.01331, (2017)

  39. Li, X., Shen, J., Rui, H.: Energy stability and convergence of sav block-centered finite difference method for gradient flows. arXiv preprint arXiv:1812.01793 (2018)

  40. Dong, S., Yang, Z., Lin, L.: A family of second-order energy-stable schemes for cahn-hilliard type equations. arXiv preprint arXiv:1803.06047 (2018)

  41. Zhao, J., Gong, Y., Wang, Q.: Aritrary high order unconditionally energy stable schemes for gradient flow models. Submitted to J. Comput. Phys. (2019)

  42. Chen, L., Zhao, J., Yang, X.: Regularized linear schemes for the molecular beam epitaxy model with slope selection. Appl. Numer. Math. 128, 139–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, X.: Efficient schemes with unconditionally energy stability for the anisotropic cahn-hilliard equation using the stabilized-scalar augmented variable (s-sav) approach. arXiv preprint arXiv:1804.02619 (2018)

  44. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38(5), A3264–A3290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Eng. 318, 803–825 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Onsager, L.: Reciprocal relations in irreversible processes. i. Phys. Rev. 37(4), 405 (1931)

    Article  MATH  Google Scholar 

  48. Onsager, L.: Reciprocal relations in irreversible processes. ii. Phys. Rev. 38(12), 2265 (1931)

    Article  MATH  Google Scholar 

  49. Qian, T., Wang, X.-P., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xianmin, X., Di, Y., Haijun, Y.: Sharp-interface limits of a phase-field model with a generalized navier slip boundary condition for moving contact lines. J. Fluid Mech. 849, 805–833 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sun, Shouwen, Jing, Xiaobo, Wang, Qi: Error estimates of energy stable numerical schemes for allen–cahn equations with nonlocal constraints. Journal of Scientific Computing, pp. 1–31 (2018)

  52. Bodewig, E.: Matrix calculus, north, p17 (1959)

Download references

Acknowledgements

This research is partially supported by NSFC Awards #11571032, #91630207 and NSAF-U1530401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Sherman-Morrison Formula and its Application to Solving the Integro-Differential Equation

Here we give a brief review on the Sherman-Morrison formula [52] and explain its applications in the practical implementation of our various relevant schemes.

Suppose A is an invertible square matrix, and u,v are column vectors. Then \(A+uv^T\) is invertible iff \(1+v^TA^{-1}u \ne 0\). If \(A+uv^T\) is invertible, then its inverse is given by

$$\begin{aligned} (A+uv^T)^{-1}=A^{-1}-\frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}. \end{aligned}$$
(A.1)

So if \(Ay=b\) and \(Az=u\), \((A+uv^T)x=b\) has the solution given by

$$\begin{aligned} x=y-\frac{v^Ty}{1+v^Tz}z. \end{aligned}$$
(A.2)

For the integral term(s) in the semi-discrete schemes in this study such as (4.26), we need to discretize it properly. \(\forall f\), we discretize \(\int _\Omega f \mathrm {d\mathbf{x}}\) using the composite trapezoidal rule and adding all the elements of the new matrix \(w_1 w_2^T f\), where \(w_1=\frac{h_x}{2}S\), \(w_2=\frac{h_y}{2}S\), \(h_x\), \(h_y\) are the spatial step sizes and \(S={[1,2,2,...,2,2,1]}^T\). For convenience, we use \(w_1w_2^T f\) to represent the integral discretized by the composite trapezoidal rule.

To solve Eq. (4.26), we discretize the integral or the inner product of functions \((c,{\upphi }^{n+1})d \) as \( u { v}^T {\upphi }^{n+1}\). The scheme is recast to \(A{\upphi }^{n+1}+u { v}^T {\upphi }^{n+1}=b^n\). After using the Sherman-Morrison formula, we get

$$\begin{aligned} {\upphi }^{n+1}= A^{-1} {b}^n-\frac{{v}^T{ A}^{-1} { {b}}^n}{{1+{ v}^T A}^{-1} u}{ A}^{-1} u, \end{aligned}$$
(A.3)

In the inner product of vectors, (4.26) can be rewritten into

$$\begin{aligned} {{\upphi }} ^{n+1}= A^{-1}{b}^n-\frac{\langle c,A^{-1}b^n\rangle }{1+\langle c,A^{-1}d\rangle }{A}^{-1}d. \end{aligned}$$
(A.4)

So, indeed the approach we take in the study using discrete inner product is essentially equivalent to applying the Sherman-Morrison formula.

The Energy Dissipation Theorem in the Full Discrete Scheme

Here we only give the energy dissipation theorem in the full discrete scheme for the Allen-Cahn model with a penalizing potential, since the others are similar.

Theorem B.1

The full discrete scheme in (4.23) obeys the following energy dissipation law

$$\begin{aligned} F^{n+1}-F^n=-{\updelta }t\langle {{\tilde{\mu }}}^{n+1/2}, {\overline{M}}^{n+1/2}{{\tilde{\mu }}}^{n+1/2} \rangle . \end{aligned}$$
(B.1)

Hence, it is unconditionally stable.

Proof

Taking the \(l^2\) inner product of \(\frac{{\upphi }^{n+1}-{\upphi }^n}{{\updelta }t}\) with \(-{{\tilde{\mu }}}^{n+1/2}\), we obtain

$$\begin{aligned} \begin{aligned} - \left\langle \frac{{\upphi }^{n+1}-{\upphi }^n}{{\updelta }t},{{\tilde{\mu }}}^{n+1/2} \right\rangle&=\langle \overline{M}^{n+1/2}[{\mu }^{n+1/2}+\sqrt{{\upeta }} {{\upzeta }}^{n+1/2}],{\mu }^{n+1/2}+\sqrt{{\upeta }} {{\upzeta }}^{n+1/2} \rangle \\&= \left\| \sqrt{\overline{M}^{n+1/2}}\left( {\mu }^{n+1/2}+\sqrt{{\upeta }} {{\upzeta }}^{n+1/2}\right) \right\| ^2_d, \end{aligned} \end{aligned}$$
(B.2)

Taking the \(l^2\) inner product of \({{\tilde{\mu }}}^{n+1/2}\) with \( \frac{{\upphi }^{n+1}-{\upphi }^n}{{\updelta }t} \), we obtain

$$\begin{aligned} \begin{aligned}&\left\langle ({-{\upgamma }_1 \nabla _h ^2{\upphi }+2{\upgamma }_2{\upphi })}^{n+1/2}+2{q}^{n+1/2} \overline{q'}^{n+1/2}+\sqrt{{\upeta }}{{\upzeta }}^{n+1/2},\frac{{\upphi }^{n+1}-{\upphi }^n}{{\updelta }t} \right\rangle \\&\quad =\frac{{\upgamma }_1}{2{\updelta }t}(||\nabla _h {\upphi }^{n+1}||^2_d-||\nabla _h {\upphi }^n||^2_d)+\frac{{\upgamma }_2}{ {\updelta }t}(||{\upphi }^{n+1}||^2_d-||{\upphi }^n||^2_d) \\&\qquad +\left\langle 2{q}^{n+1/2} \overline{q'}^{n+1/2},\frac{{\upphi }^{n+1}-{\upphi }^n}{{\updelta }t} \right\rangle + \left\langle \sqrt{{\upeta }}{{\upzeta }}^{n+1/2},\frac{{\upphi }^{n+1}-{\upphi }^n}{{\updelta }t} \right\rangle . \end{aligned} \end{aligned}$$
(B.3)

Taking the \(l^2\) inner product of \(q^{n+1}-q^n\) with \( \frac{q^{n+1}+q^n}{{\updelta }t} \), we obtain

$$\begin{aligned} \frac{1}{{\updelta }t}(||q^{n+1}||^2_d-||q^{n}||^2_d)=\frac{1}{{\updelta }t}\langle \overline{q'}^{n+1/2}({\upphi }^{n+1}-{\upphi }^n),q^{n+1}+q^{n} \rangle . \end{aligned}$$
(B.4)

Taking the \(l^2\) inner product of \({\upzeta }^{n+1}-{\upzeta }^n\) with \(\frac{{\upzeta }^{n+1}+{\upzeta }^n}{{\updelta }t} \), we obtain

$$\begin{aligned} \frac{1}{{\updelta }t}(||{\upzeta }^{n+1}||^2_d-||{\upzeta }^{n}||^2_d)=\frac{1}{{\updelta }t}\langle \sqrt{{\upeta }} ||{\upphi }^{n+1}-{\upphi }^n||^2_d,{\upzeta }^{n+1}+{\upzeta }^{n} \rangle . \end{aligned}$$
(B.5)

Combining the above equations, we have

$$\begin{aligned} \begin{aligned}&\frac{{\upgamma }_1}{2{\updelta }t}(||\nabla _h {\upphi }^{n+1}||^2_d-||\nabla _h {\upphi }^n||^2_d)+\frac{{\upgamma }_2}{ {\updelta }t}(||{\upphi }^{n+1}||^2_d-||{\upphi }^n||^2_d) \\&\qquad +\frac{1}{{\updelta }t}(||q^{n+1}||^2_d-||q^{n}||^2_d)+\frac{1}{2 {\updelta }t}(||{\upzeta }^{n+1}||^2_d-||{\upzeta }^{n}||^2_d)\\&\quad =- \left\| \sqrt{\overline{M}^{n+1/2}}({\mu }^{n+1/2}+\sqrt{{\upeta }} {{\upzeta }}^{n+1/2}) \right\| ^2_d. \end{aligned} \end{aligned}$$
(B.6)

This proves the energy stability equality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, X., Li, J., Zhao, X. et al. Second Order Linear Energy Stable Schemes for Allen-Cahn Equations with Nonlocal Constraints. J Sci Comput 80, 500–537 (2019). https://doi.org/10.1007/s10915-019-00946-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00946-x

Keywords

Navigation