Skip to main content
Log in

Entropy Production by Implicit Runge–Kutta Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper follows up on the author’s recent paper “Entropy Production by Explicit Runge–Kutta schemes” (Lozano in J Sci Comput 76(1):521–564, 2018. https://doi.org/10.1007/s10915-017-0627-0), where a formula for the production of entropy by fully discrete schemes with explicit Runge–Kutta time integrators was presented. In this paper, the focus is on implicit Runge–Kutta schemes, for which the fully discrete numerical entropy evolution scheme is derived and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In its original form, this generalized Crank–Nicolson scheme requires an intermediate temporal state that unfortunately does not generally have a closed form and requires quadrature. An explicit construction has been recently derived in [25].

  2. If A is not invertible we can consider the enlarged matrix \( \tilde{A} = \left( {\frac{A}{{b^{T} }}} \right) \) (where \( b = (b_{1} , \ldots ,b_{s} )^{T} \)). If \( {\text{rank}}(\tilde{A}) = s \), we can invert (7) in the least-squares sense as \( R_{i} = - (\tilde{A}^{T} \tilde{A})^{ - 1} \tilde{A}^{T} \Delta U_{i} \), (where \( \Delta U_{i} = \left( {U_{i}^{(1)} - U_{i}^{n} , \ldots ,U_{i}^{(s)} - U_{i}^{n} } \right)^{T} \) and \( R_{i} = (R_{i}^{1} , \ldots ,{\kern 1pt} R_{i}^{s} )^{T} \)), so in (14) we should replace \( A^{ - 1} \) with \( (\tilde{A}^{T} \tilde{A})^{ - 1} \tilde{A}^{T} . \).

  3. An entropy conservative scheme is one for which the numerical flux verifies \( \Delta {\text{v}}_{{i + \tfrac{1}{2}}}^{T} \tilde{F}_{{i + \tfrac{1}{2}}} = \Delta \varTheta_{{i + \tfrac{1}{2}}} \) and thus the entropy production \( \varPi_{{i + \tfrac{1}{2}}} = 0 \). In the scalar case, the entropy conservative flux is unique for each choice of entropy function and can be computed as \( \tilde{F}_{{i + \tfrac{1}{2}}} = \Delta \varTheta_{{i + \tfrac{1}{2}}} /\Delta {\text{v}}_{{i + \tfrac{1}{2}}} \). As explained in [12], entropy stable schemes can be constructed by coupling an entropy conservative scheme to a suitable diffusion operator.

  4. A Runge–Kutta method is algebraically stable if the matrices B and \( M = BA + A^{T} B - bb^{T} \) are both non-negative definite ([32], p. 275). If A is non-singular, then M and Q are congruent, \( Q = A^{ - T} MA^{ - 1} \), and thus M is non-negative definite iff Q is.

References

  1. Lozano, C.: Entropy production by explicit Runge–Kutta Schemes. J. Sci. Comput. 76(1), 521–564 (2018). https://doi.org/10.1007/s10915-017-0627-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  3. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge–Kutta methods for ordinary differential equations. A review. NASA/TM–2016–219173 (2016)

  4. Gottlieb, S., Ketcheson, D.: Time discretization techniques, chapter 21. In: Abgrall, R., Shu, C.W. (eds.) Handbook of numerical methods for hyperbolic problems, vol. 17, pp. 549–583. Elsevier, Amsterdam (2016)

    Google Scholar 

  5. Persson, P.-O., Willis, D., Peraire, J.: The numerical simulation of flapping wings at low Reynolds numbers. In: AIAA Paper 2010-724 (2010)

  6. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002). https://doi.org/10.1006/jcph.2002.7059

    Article  MATH  Google Scholar 

  7. Jameson, A.: Evaluation of fully implicit Runge Kutta schemes for unsteady flow calculations. J. Sci. Comput. 73(2–3), 819–852 (2017). https://doi.org/10.1007/s10915-017-0476-x

    Article  MathSciNet  MATH  Google Scholar 

  8. Lax, P.: Shock waves and entropy. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 603–634. Academic Press, New York (1971)

    Chapter  Google Scholar 

  9. Harten, A., Hyman, J.M., Lax, P.D., Keyfitz, B.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29, 297–322 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Osher, S.: Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21(2), 217–235 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tadmor, E.: Entropy stable schemes, chapter 18. In: Abgrall, R., Shu, C.W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, vol. 17, pp. 467–493. Elsevier, Amsterdam (2016)

    Google Scholar 

  12. Tadmor, E.: Entropy Stability Theory for Difference Approximations of Nonlinear Conservation Laws and Related Time-dependent Problems. Acta Numerica 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

  13. Lefloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fjordholm, U., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, G.-S., Shu, C.-W.: On a cell entropy inequality for discontinuous Galerkin method. Math. Comp. 62, 531–538 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.W.: Discontinuous Galerkin methods: General approach and stability. In: Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics CRM Barcelona, pp. 149–201 (2009)

  17. Hiltebrand, A., Mishra, S.: Entropy stable shock capturing streamline diffusion space-time discontinuous Galerkin (DG) methods for systems of conservation laws. Numer. Math. 126, 103–151 (2014). https://doi.org/10.1007/s00211-013-0558-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Qiu, J., Zhang, Q.: Stability, error estimate and limiters of discontinuous Galerkin methods. In: Abgrall, R., Shu, C.W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, chapter 7, vol. 17, pp. 147–171. Elsevier, Amsterdam (2016)

    Google Scholar 

  19. Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  20. Carpenter, M., Fisher, T., Nielsen, E., Parsan, M., Svärd, M., Yamaleev, N.: Entropy stable summation-by-parts formulations for compressible computational fluid dynamics, chapter 19. In: Abgrall, R., Shu, C.W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, vol. 17, pp. 495–524. Elsevier, Amsterdam (2016)

    Google Scholar 

  21. Jameson, A.: The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy. J. Sci. Comput. 34, 152–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34, 188–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diosdady, L., Murman, S.: Higher-order methods for compressible turbulent flows using entropy variables. In: AIAA Paper 2015-0294, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, Jan 5, 2015

  25. Gouasmi, A., Murman, S., Duraisamy, K.: Entropy conservative schemes and the receding flow problem. Preprint arXiv:1801.10132v1 [math.NA], January 30, 2018

  26. Gouasmi, A., Duraisamy, K., Murman, S.: On entropy stable temporal fluxes. Preprint arXiv:1807.03483v2 [math.NA], July 21, 2018

  27. Fjordholm, U., Mishra, S., Tadmor, E.: Energy preserving and energy stable schemes for the shallow water equations. In: Cucker, F., Pinkus, A., Todd, M. (eds.), Proceedings of Foundations of Computational Mathematics, London Math. Soc. Lecture Notes Ser. 36393-139, Hong Kong (2009)

  28. Merriam, M.L.: An entropy-based approach to nonlinear stability. NASA TM-101086, March 1989

  29. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tadmor, E.: Entropy functions for symmetric systems of conservation laws. J. Math. Anal. Appl. 122(2), 355–359 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Burrage, K.: Stability and efficiency properties of implicit Runge–Kutta methods. PhD Thesis, University of Auckland, 1978

  32. Lambert, J.: Numerical methods for ordinary differential systems. The initial value problem. Wiley, ISBN 0-471-92990-5, 1991

  33. Burrage, K., Butcher, J.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16, 46–57 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kraaijevanger, J., Spijker, M.N.: Algebraic stability and error propagation in Runge–Kutta methods. Appl. Numer. Math. 5(1–2), 71–87 (1989). https://doi.org/10.1016/0168-9274(89)90025-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Zakerzadeh, H., Fjordholm, U.: High-order accurate, fully discrete entropy stable schemes for scalar conservation laws. IMA J. Numer. Anal. 36(2), 633–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tadmor, E., Zhong, W.: Novel entropy stable schemes for 1D and 2D fluid equations. In: Benzoni-Gavage, S., Serre, D. (eds.) Hyperbolic problems: theory, numerics, applications, pp. 1111–1119. Springer, Berlin (2008)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Defence and INTA under the research program “Termofluidodinámica” (IGB99001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lozano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, C. Entropy Production by Implicit Runge–Kutta Schemes. J Sci Comput 79, 1832–1853 (2019). https://doi.org/10.1007/s10915-019-00914-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00914-5

Keywords

Navigation