Skip to main content
Log in

Filtered Hyperbolic Moment Method for the Vlasov Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effect of the filter for the hyperbolic moment equations (HME) (Cai et al. in Commun Pure Appl Math 67(3):464–518, 2014; Cai et al. in SIAM J Sci Comput 35(6):A2807–A2831, 2013) of the Vlasov–Poisson equations and propose a novel quasi time-consistent filter to suppress the numerical recurrence effect. By taking properties of HME into consideration, the filter preserves a lot of physical properties of HME, including Galilean invariance and conservation of mass, momentum and energy. We present two viewpoints—collisional viewpoint and dissipative viewpoint—to dissect the filter, and show that the filtered hyperbolic moment method can be treated as a solver of the Vlasov equation. Numerical simulations of the linear Landau damping and two stream instability demonstrate the effectiveness of the filter in restraining recurrence arising from particle streaming. Both the analysis and the numerical results indicate that the filtered method can capture the evolution of the Vlasov equation, even when phase mixing and filamentation dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adjerid, S., Flaherty, J.E.: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, T.P.: Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269–1280 (1967)

    Article  Google Scholar 

  3. Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. J. Sci. Comput. 9, 29–86 (1970)

    Google Scholar 

  4. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  5. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (2004)

    Book  Google Scholar 

  6. Bourdiec, S.L., Vuyst, F.D., Jacquet, L.: Numerical solution of the Vlasov–Poisson system using generalized Hermite functions. Commun. Comput. Phys. 175(8), 528–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z., Fan, Y., Li, R.: From discrete velocity model to moment method. Math. Numer. Sin. 38(3), 227–244 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, Z., Li, R., Wang, Y.: Solving Vlasov equation using NR\(xx\) method. SIAM J. Sci. Comput. 35(6), A2807–A2831 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Wang, Y.: Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144–3168 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov–Poisson system: comparison between implicit Hermite spectral and particle-in-cell methods. Commun. Comput. Phys. 198, 47–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A., et al.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Carrillo, J., Gamba, M., Majorana, A., Shu, C.: A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)

    Article  Google Scholar 

  16. Cheng, Y., Gamba, M., Morrison, J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phy. 167(5), 1280–1302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Di, Y., Kou, Z., Li, R.: High order moment closure for Vlasov–Maxwell equations. Front. Math. China 10(5), 1087–1100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions theory and applications. Transp. Theory Stat. Phys. 39(5–7), 387–465 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ellasson, B.: Outflow boundary conditions for Fourier transformed one-dimensional Vlasov–Poisson system. J. Sci. Comput. 16, 1–28 (2001)

    Article  MathSciNet  Google Scholar 

  22. Fatemi, E., Odeh, F.: Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices. J. Comput. Phys. 108(2), 209–217 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Filbet, F.: Convergence of a finite volume scheme for the Vlasov–Poisson system. SIAM J. Numer. Anal. 39(4), 1146–1169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grant, F.C., Feix, M.R.: Fourier-Hermite solutions of the Vlasov equations in the linearized limit. Phy. Fluids 10(4), 696–702 (1967)

    Article  Google Scholar 

  29. Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hesthaven, J.S., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Holloway, J.P.: Spectral velocity discretizations for the Vlasov–Maxwell equations. Transp. Theory Stat. 25(1), 1–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Joyce, G., Knorr, G., Meier, H.K.: Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53–63 (1971)

    Article  MATH  Google Scholar 

  34. Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68(1), 202–226 (1987)

    Article  MATH  Google Scholar 

  36. Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kreiss, H.O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16, 421–433 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Landau, L.: On the vibrations of the electronic plasma. Eur. J. Org. Chem. 2006(2), 498–506 (1946)

    MATH  Google Scholar 

  39. McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second Edition, Volume 37 of Springer tracts in natural philosophy. Springer, New York (1998)

    Google Scholar 

  41. Ng, C.S., Bhattacharjee, A., Skiff, F.: Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 92(6), 065002 (2004)

    Article  Google Scholar 

  42. Parker, J.T., Dellar, P.J.: Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit. J. Plasma Phys. 81(02), 305810203 (2015)

    Article  Google Scholar 

  43. Qiu, J., Shu, C.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schumer, J.W., Holloway, J.P.: Vlasov simulation using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)

    Article  MATH  Google Scholar 

  45. Shoucri, M., Knorr, G.: Numerical integration of the Vlasov equation. J. Comput. Phys. 14(1), 84–92 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sonnendrücker, E., Roche, J., Betrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys 149(2), 201–220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM J. Multiscale Model. Simul. 5(3), 695–728 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vlasov, A.A.: On vibration properties of electron gas. J. Exp. Theor. Phys. 8(3), 291 (1938)

    Google Scholar 

  49. Zaki, S.I., Gardner, R.T., Boyd, T.J.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research of Y. Di is supported in part by the Natural Science Foundation of China (Grant Nos. 11771437 and 91630208). And that of Y. Wang is supported in part by the Natural Science Foundation of China No. 11501042. R. Li is supported in part by the National Natural Science Foundation of China (Grant No. 9163030002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, Y., Fan, Y., Kou, Z. et al. Filtered Hyperbolic Moment Method for the Vlasov Equation. J Sci Comput 79, 969–991 (2019). https://doi.org/10.1007/s10915-018-0882-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0882-8

Keywords

Navigation