Skip to main content
Log in

Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction–Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a fractional diffusion equation with a reaction term in one dimensional space. We first establish the regularity in weighted Sobolev spaces. Then we present an optimal error estimate for a spectral Galerkin method for the equation and a sub-optimal error estimate for a spectral Petrov–Galerkin method. Numerical results suggest that the convergence order in a weighted \(L^2\)-norm is \(2\alpha +1\) for smooth inputs where \(\alpha \) is the order of the fractional Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia, PA (1975)

    Book  MATH  Google Scholar 

  4. Babuska, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces, SIAM J. Numer. Anal., 39, 1512–1538 (2001/02)

  5. Bagley, R.L.: On the fractional order initial value problem and its engineering applications. In: Nishimoto, K. (ed.) Fractional Calculus and its Applications, vol. 317, pp. 12–20. Nihon University, Koriyama (1990)

    Google Scholar 

  6. Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 75, 623–635 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W.: A speculative study of 2/3-order fractional laplacian modeling of turbulence: some thoughts and conjectures. Chaos Interdiscip. J. Nonlinear Sci. 16, 023126 (2006)

    Article  MATH  Google Scholar 

  8. Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 413–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cifani, S., Jakobsen, E.R.: On the spectral vanishing viscosity method for periodic fractional conservation laws. Math. Comput. 82, 1489–1514 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cousins, W., Sapsis, T.P.: Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model. Physica D 280, 48–58 (2014)

    Article  MATH  Google Scholar 

  11. Das, S., Pan, I.: Fractional Order Signal Processing, Springer Briefs in Applied Sciences and Technology. Springer, Heidelberg (2012). (Introductory concepts and applications)

    Book  Google Scholar 

  12. Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18, 342–360 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, B., Zhang, Z., Zhao, X.: Superconvergence points for the spectral interpolation of Riesz fractional derivatives. arxiv:1709.10223 (2017)

  15. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyda, B.: Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15, 536–555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fdez-Manin, G., Munoz-Sola, R.: Polynomial approximation of some singular solutions in weighted Sobolev space. In: Ilin, A.V., Scott, L.R. (eds.) Proceedings of the Third International Conference on Spectral and Higher Order Methods, Houston Journal of Mathematics, Houston, Texas, (1995). ICOSAHOM 95

  18. Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65, 249–270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III. The diffusion limit. In: Mathematical finance (Konstanz, 2001), Trends Math. Birkhäuser, Basel, pp. 171–180 (2000)

  20. Grubb, G.: Spectral asymptotics for nonsmooth singular Green operators. Commun. Partial Differ. Equ. 39, 530–573 (2014). (With an appendix by H. Abels)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421, 1616–1634 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guan, Q.-Y.: Integration by parts formula for regional fractional Laplacian. Commun. Math. Phys. 266, 289–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hall, M.G., Barrick, T.R.: From diffusion-weighted mri to anomalous diffusion imaging. Magn. Resonan. Med. 59, 447–455 (2008)

    Article  Google Scholar 

  25. Hanyga, A., Seredyńska, M.: Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media-i. forward problems. Geophys. J. Int. 137, 319–335 (1999)

    Article  Google Scholar 

  26. Huang, Y., Oberman, A.: Numerical methods for the fractional laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kwasnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lokshin, A.A., Rok, V.E.: Automodel solutions of wave equations with time lag. Russ. Math. Surv. 33, 243–244 (1978)

    Article  MATH  Google Scholar 

  29. Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

    Chapter  Google Scholar 

  31. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  32. Majda, A., McLaughlin, D., Tabak, E.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7, 9–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meerschaert, M.M., Magin, R.L., Ye, A.Q.: Anisotropic fractional diffusion tensor imaging. J. Vib. Control 22, 2211–2221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010). (Civil-Comp Special Issue)

    Article  MATH  Google Scholar 

  36. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63, 010801 (2010)

    Article  Google Scholar 

  38. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  39. Seredyska, M., Hanyga, A.: Nonlinear hamiltonian equations with fractional damping. J. Math. Phys. 41, 2135–2156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing. Springer, London (2012)

    Book  MATH  Google Scholar 

  41. Simpson, D., Lindgren, F., Rue, H.: Think continuous: Markovian gaussian models in spatial statistics. Spat. Stat. 1, 16–29 (2012)

    Article  Google Scholar 

  42. Suarez, L., Shokooh, A.: Response of systems with damping materials modeled using fractional calculus. Appl. Mech. Rev. 48, S118–S126 (1995)

    Article  Google Scholar 

  43. Toledo-Hernandez, R., Rico-Ramirez, V., Iglesias-Silva, G.A., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: fractional models for biological reactions. Chem. Eng. Sci. 117, 217–228 (2014)

    Article  Google Scholar 

  44. Whittle, P.: On stationary processes in the plane. Biometrika 41, 434–449 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, X., Gunzburger, M., Ju, L.: Quadrature rules for finite element approximations of 1D nonlocal problems. J. Comput. Phys. 310, 213–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Hongjie Dong at Brown University for helpful discussion on an early draft of this work. The author also thanks the anonymous reviewers for their valuable comments. This work was partially supported by MURI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiang Zhang.

Appendices

Appendix A: Proof of Lemma 2.3

Lemma A.1

[16] Let \(u_p= (1-x^2)^p,\, \left| x\right| \le 1\), \(p>-1\) and \(u_p(x)=0\) when \(\left| x\right| >1\), then for \(x\in (-1,1)\)

$$\begin{aligned} -(-\Delta )^{\alpha /2} u_p(x) = c_{1, \alpha } B(-\alpha /2, \,p+1) {}_{2}F_{1}\left( \frac{\alpha +1}{2},-p+\frac{\alpha }{2}; \frac{1}{2}; x^2\right) . \end{aligned}$$
(A.1)

Let \(v_p(x)= (1-x^2)^p x,\, \left| x\right| \le 1\) and \(v_p(x)=0\) when \(\left| x\right| >1\), \(p>-1\). Then for \(x\in (-1,1)\)

$$\begin{aligned} - (-\Delta )^{\alpha /2} v_p(x) = (\alpha +1) c_{1, \alpha } B(-\alpha /2, \,p+1) {}_{2}F_{1}\left( \frac{\alpha +3}{2},-p+\frac{\alpha }{2}; \frac{3}{2}; x^2\right) x.\nonumber \\ \end{aligned}$$
(A.2)

Here \( B(\cdot , \cdot )\) is the Beta function and the hypergeometric function \({}_2F_1(a,b;c;z) \) is defined for \(|z| < 1\) by the power series

$$\begin{aligned} {}_2F_1(a,b;c;z) = \sum _{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!}.\end{aligned}$$

Here \((q)_n\) is the (rising) Pochhammer symbol, which is defined by:

$$\begin{aligned} (q)_n = {\left\{ \begin{array}{ll} 1 &{} n = 0 \\ q(q+1) \cdots (q+n-1) = \frac{\Gamma (q+n)}{\Gamma (q)} &{} n > 0 \end{array}\right. }.\end{aligned}$$

Proof of Lemma 2.3

The conclusion can be shown by induction. By Lemma A.1, for \(n=0,\)\( (-\Delta )^{\alpha /2}[(1-x^2)^{\alpha /2} ] = \Gamma (\alpha +1), \) and for \(n=1\), \( (-\Delta )^{\alpha /2}[(1-x^2)^{\alpha /2} x] = \Gamma (\alpha +2) x.\)

Now suppose that \(k\le n\) the relation holds then when \(k=n+1\), we want

$$\begin{aligned} (-\Delta )^{\alpha /2}\left[ (1-x^2)^{\alpha /2}P_{n+1}^{\alpha /2}(x)\right] = D_{n+1,\alpha }P_{n+1}^{\alpha /2}(x). \end{aligned}$$

By integration-by-parts formula [22] (or Lemma 2.1), for any \(j\le n\), we have

$$\begin{aligned}&\int _{-1}^{1} (-\Delta )^{\alpha /2}[(1-x^2)^{\alpha /2}P_{n+1}^{\alpha /2}(x)] P_j^{\alpha /2}(1-x^2)^{\alpha /2} ) \,dx \\&\quad = \int _{-1}^{1}(1-x^2)^{\alpha /2}P_{n+1}^{\alpha /2}(x) (-\Delta )^{\alpha /2}[P_j^{\alpha /2}(1-x^2)^{\alpha /2} ])\,dx \\&\quad = D_{j,\alpha } \int _{-1}^{1} (1-x^2)^{\alpha /2} P_{n+1}^{\alpha /2} P_j^{\alpha /2} \,dx=0. \end{aligned}$$

Here we have used the induction assumption. By the orthogonality of Jacobi polynomials and also by Lemma A.1 that \((-\Delta )^{\alpha /2}[(1-x^2)^{\alpha /2}P_{n+1}^{\alpha /2}(x)]\) is a polynomial of order \(n+1\), then we have

$$\begin{aligned} (-\Delta )^{\alpha /2}[(1-x^2)^{\alpha /2}P_{n+1}^{\alpha /2}(x)]= C_{n+1,\alpha }P_{n+1}^{\alpha /2}(x). \end{aligned}$$
(A.3)

where \(C_{n+1,\alpha }\) is a constant to be determined, depending on \(n+1\) and \(\alpha \). Then we compare the coefficients of leading-order term over both sides and obtain the conclusion at \(k=n+1\).

The constant \(C_{n+1,\alpha }\) can be found as follows. Suppose that \(m=n+1=2k\). We only need to compare the coefficients of the leading order term of both sides of (A.3). By Lemma A.1, it only requires to check the coefficient of leading-order term of \(c_{1,\alpha } B(-\alpha /2, \,p+1) {}_{2}F_{1}(\frac{\alpha +1}{2},-p+\frac{\alpha }{2}; \frac{1}{2}; x^2)\), where \(p=k+\alpha /2\). By the definition of Pochhammer symbol, the coefficient is

$$\begin{aligned}&\frac{2^\alpha \Gamma (\frac{\alpha +1}{2})}{\pi ^{1/2} \left| \Gamma (-\alpha /2)\right| }\frac{\Gamma (-\alpha /2)\Gamma (p+1)}{\Gamma (p-\alpha /2+1)} \frac{(\frac{(\alpha +1)}{2})_k (-p+\alpha /2)_k }{(1/2)_k k!} \\&\quad = -\frac{2^\alpha \Gamma (\frac{\alpha +1}{2}) }{\pi ^{1/2} }\frac{\Gamma (k+\frac{\alpha }{2}+1)}{\Gamma (k+1)} \frac{\Gamma (\frac{\alpha +1}{2}+k) \Gamma (\frac{1}{2})}{\Gamma (\frac{\alpha +1}{2}) \Gamma (\frac{1}{2}+k) }\frac{(-k)_k}{k!}\\&\quad = (-1)^{k+1}\frac{2^\alpha }{\pi ^{1/2} }\frac{\Gamma (k+\frac{\alpha }{2}+1)}{\Gamma (k+1)} \frac{\Gamma (\frac{\alpha +1}{2}+k) \Gamma (\frac{1}{2})}{ \Gamma (\frac{1}{2}+k) } \\&\quad =\frac{(-1)^{k+1}2^\alpha \Gamma (\frac{1}{2}) }{ \pi ^{1/2} }\frac{ \Gamma (k+\frac{\alpha }{2}+1) \Gamma (\frac{\alpha +1}{2}+k)}{\Gamma (k+1) \Gamma (\frac{1}{2}+k) }. \end{aligned}$$

Then by the the duplication formula, \( \Gamma (z) \Gamma \left( z + \tfrac{1}{2}\right) = 2^{1-2z} \; \sqrt{\pi } \; \Gamma (2z), \) and the fact that \(\Gamma (1/2)=\sqrt{\pi }\), we have that the coefficient is

$$\begin{aligned} \frac{(-1)^{k+1}2^\alpha \Gamma (\frac{1}{2}) }{ \pi ^{1/2} }\frac{ \Gamma (k+\frac{\alpha }{2}+1) \Gamma (\frac{\alpha +1}{2}+k)}{\Gamma (k+1) \Gamma (\frac{1}{2}+k) }= & {} \frac{(-1)^{k+1}2^\alpha \Gamma (\frac{1}{2}) }{ \pi ^{1/2} }\frac{ \sqrt{\pi } 2^{-\alpha -2k} \Gamma ( \alpha +1 +2k)}{2^{-2k}\sqrt{\pi } \Gamma (2k+1) } \\= & {} (-1)^{k+1}\frac{\Gamma (\alpha +1+ m)}{m! }. \end{aligned}$$

Comparing the coefficients of leading order terms of both sides of (A.3), we have \((-1)^{k} C_{m,\alpha } = (-1)^{k+2}\frac{\Gamma (\alpha +1+ m)}{m!}\) and thus \(C_{m,\alpha }= \frac{\Gamma (\alpha +1+ m)}{m!}\). Similarly, we can have the same conclusion when \(m=n+1=2k+1\). \(\square \)

Appendix B: Some Useful Relations of Jacobi Polynomials

The following relations hold for Jacobi polynomials, see e.g. [3, Chapter 2],

$$\begin{aligned} \frac{\text {d}^k}{\text {d} z^k} P_n^{\alpha ,\beta } (z)= & {} d_{n,k}^{\alpha ,\beta } P_{n-k}^{\alpha +k, \beta +k} (z),\quad d_{n,k}^{\alpha ,\beta }=\frac{\Gamma (n+k+\alpha +\beta +1)}{2^k \Gamma (n+\alpha +\beta +1)}. \end{aligned}$$
(B.1)

The Jacobi polynomial can be represented using Rodrigue’s formula:

$$\begin{aligned} \omega ^{\alpha ,\beta }P_n^{\alpha ,\beta } = \frac{(-1)^n}{2^n n!}\frac{d^n}{dx^n}(\omega ^{n+\alpha ,n+\beta }). \end{aligned}$$
(B.2)

The Jacobi polynomial \(P_n^{\alpha ,\beta } (x)\) is a solution of the second order linear homogeneous differential equation

$$\begin{aligned} \partial _x \left( (1-x)^{\alpha +1} (1+x)^{\beta +1}\partial _x u \right) + n(n+\alpha +\beta +1) (1-x)^{\alpha } (1+x)^{\beta } u = 0. \end{aligned}$$

The following is an application of Rodrigue’s formula (B.2) and this equation.

Lemma B.1

For \(\alpha ,\beta >-1\), we have

$$\begin{aligned} \partial _x \left( (1-x)^{\alpha +1} (1+x)^{\beta +1} P_{n-1}^{\alpha +1,\beta +1} \right) = -2n (1-x)^{\alpha } (1+x)^{\beta } P_n^{\alpha ,\beta }. \end{aligned}$$
(B.3)

Lemma B.2

The following relation holds, for \(\beta >-1\)

$$\begin{aligned} P_{n}^{\beta ,\beta } = {\widehat{A}}_n^{\beta ,\beta } P_{n-2}^{\beta +1,\beta +1} + {\widehat{C}}_{n}^{\beta ,\beta } P_{n}^{\beta +1,\beta +1}, \end{aligned}$$
(B.4)

where \({\widehat{A}}_{n}^{\beta ,\beta } = -\frac{ n+\beta }{2(2n+2\beta +1)}\) and \({\widehat{C}}_{n}^{\beta ,\beta } = \frac{ (n+2\beta +1)(n+2\beta +2)}{2(2n+2\beta +1)(n+\beta +1)}\).

Lemma B.3

For \(\alpha >0\), there is a constant C independent of \(n,\,l,\,\alpha \) such that

$$\begin{aligned} (h_{n}^{\alpha /2-1})^{-1} \left| (P_{2l+n}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}}\right| \le C. \end{aligned}$$
(B.5)

Proof

By the Rodrigue’s representation of Jacobi polynomials and integration by parts, we have

$$\begin{aligned} (P_{2l+n}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}}= & {} \frac{(-1)^n}{n!2^n} (P_{2l+n}^{\alpha /2}, \partial _x^n \omega ^{\alpha /2+n-1}) =\frac{1}{n!2^n}d_{2l+n,n}^{\alpha /2} (P_{2l}^{\alpha /2+n }, \omega ^{\alpha /2+n-1}). \end{aligned}$$

Now we compute the integral \((P_{2l}^{\alpha /2+n }, \omega ^{\alpha /2+n-1}).\) From Lemma B.2, we have

$$\begin{aligned}&{\widehat{C}}_{2l}^{\alpha /2+n-1 } (P_{2l}^{\alpha /2+n }, \omega ^{\alpha /2+n-1}) + {\widehat{A}}_{2l}^{\alpha /2+n-1 } (P_{2l-2}^{\alpha /2+n }, \omega ^{\alpha /2+n-1})\\&\quad = (P_{2l}^{\alpha /2+n-1 }, \omega ^{\alpha /2+n-1}) = h_{0}^{\alpha /2+n-1 } \delta _{2l,0}. \end{aligned}$$

Then by induction, we have for \(l\ge 1\)

$$\begin{aligned}&(P_{2l}^{\alpha /2+n}, \omega ^{\alpha /2+n-1}) \\&\quad = (-1)^{l-1} \frac{ {\widehat{A}}_{2l}^{\alpha /2+n-1 }}{ {\widehat{C}}_{2l}^{\alpha /2+n-1 }} \cdots \frac{ {\widehat{A}}_{4}^{\alpha /2+n-1 }}{ {\widehat{C}}_{4}^{\alpha /2+n-1 }} \left( \frac{ h_{0}^{\alpha /2+n-1 }}{ {\widehat{C}}_{2}^{\alpha /2+n-1 }}-\frac{ {\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{C}}_{2}^{\alpha /2+n-1 }}(P_{0}^{\alpha /2+n}, \omega ^{\alpha /2+n-1}) \right) \\&\quad = (-1)^{l-1} \frac{ {\widehat{A}}_{2l}^{\alpha /2+n-1 }}{ {\widehat{C}}_{2l}^{\alpha /2+n-1 }} \cdots \frac{ {\widehat{A}}_{4}^{\alpha /2+n-1 }}{ {\widehat{C}}_{4}^{\alpha /2+n-1 }} \frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{C}}_{2}^{\alpha /2+n-1 }} h_{0}^{\alpha /2+n-1 }. \end{aligned}$$

From Lemma B.2, we have

$$\begin{aligned} \frac{ {\hat{A}}_{2l}^{\alpha /2+n-1 }}{ {\hat{C}}_{2l}^{\alpha /2+n-1 }} = - \frac{(2l+\alpha /2+n-1)(2l+\alpha /2+n) }{(2l+\alpha +2n-1)(2l+\alpha +2n )}. \end{aligned}$$

This leads to

$$\begin{aligned} (P_{2l}^{\alpha /2+n}, \omega ^{\alpha /2+n-1}) = h_{0}^{\alpha /2+n-1 } \frac{\Gamma (2l+ \alpha /2+n+1) \Gamma (\alpha +2n+3)}{\Gamma (2l+ \alpha +2n+1)\Gamma (\alpha /2+n+3)}\frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{A}}_{2}^{\alpha /2+n-1 }} .\nonumber \\ \end{aligned}$$
(B.6)

Then we have

$$\begin{aligned}&(P_{2l+n}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}}\\&\quad = \frac{1}{n!2^n}d_{2l+n,n}^{\alpha 2/,\alpha /2}h_{0}^{\alpha /2+n-1 } \frac{\Gamma (2l+ \alpha /2+n+1) \Gamma (\alpha +2n+3)}{\Gamma (2l+ \alpha +2n+1)\Gamma (\alpha /2+n+3)}\frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{A}}_{2}^{\alpha /2+n-1 }} \\&\quad = \frac{\Gamma (2l+2n+\alpha +1)}{n!2^{2n} \Gamma (2l+n+\alpha +1)} \frac{\Gamma (2l+ \alpha /2+n+1) \Gamma (\alpha +2n+3)}{\Gamma (2l+ \alpha +2n+1)\Gamma (\alpha /2+n+3)} h_{0}^{\alpha /2+n-1 }\frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{A}}_{2}^{\alpha /2+n-1 }} \\&\quad = \frac{\Gamma (2l+ \alpha /2+n+1)}{2^n \Gamma (2l+n+\alpha +1) } \frac{ \Gamma (\alpha +2n+3)}{ \Gamma (\alpha /2+n+3)n!2^n} h_{0}^{\alpha /2+n-1 } \frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{A}}_{2}^{\alpha /2+n-1 }}. \end{aligned}$$

Then by (2.5),

$$\begin{aligned}&(h_{n}^{\alpha /2-1})^{-1}(P_{2l+n}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}} \\&\quad = \frac{\Gamma (2l+ \alpha /2+n+1)}{n!2^{2n} \Gamma (2l+n+\alpha +1) } \frac{ \Gamma ( \alpha +2n+3) }{ \Gamma (n+\alpha /2+3) } \frac{h_{0}^{\alpha /2+n-1 }}{h_{n}^{\alpha /2-1}} \frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{A}}_{2}^{\alpha /2+n-1 }}\\&\quad = \frac{\Gamma (2l+ \alpha /2+n+1)}{ \Gamma (2l+n+\alpha +1) }\frac{ \Gamma (\alpha +2n+3) }{ \Gamma (n+\alpha /2+3) } \frac{ \Gamma (n+\alpha -1)}{ \Gamma (2n+\alpha -1) }\frac{ 1-{\widehat{A}}_{2}^{\alpha /2+n-1 }}{ {\widehat{A}}_{2}^{\alpha /2+n-1 }}. \end{aligned}$$

Then by the fact which can be proved by Stirling’s formula that

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{\Gamma (n+\delta )}{n^{\delta -\gamma }\Gamma (n+ \gamma )} = \lim _{n\rightarrow \infty } (1+\frac{(\delta -\gamma )(\delta +\gamma -1)}{2n}+\mathcal {O}(n^{-2}))=1, \end{aligned}$$
(B.7)

we obtain the conclusion (B.5). \(\square \)

Proof of Lemma 2.5

By Lemma B.2 and Lemma 2.3, we have

$$\begin{aligned} (-\Delta )^{\alpha /2}[(1-x^2)^{\alpha /2}P_n^{\alpha /2-1}(x)]= & {} (-\Delta )^{\alpha /2}[(1-x^2) ^{\alpha /2}({\widehat{A}}_{n}^{\alpha /2-1} P_{n-2}^{\alpha /2}(x) + {\widehat{C}}_{n}^{\alpha /2-1} P_{n}^{\alpha /2}(x)] \\= & {} {\widehat{A}}_{n}^{\alpha /2-1}D_{n-2,\alpha }P_{n-2}^{\alpha /2}(x) + {\widehat{C}}_{n}^{\alpha /2-1} D_{n,\alpha }P_{n}^{\alpha /2}(x). \end{aligned}$$

Here \({\widehat{A}}_{n}^{\alpha /2-1}\), \({\widehat{C}}_{n}^{\alpha /2-1}\) are from Lemma B.2 and \( D_{n,\alpha }, D_{n-2,\alpha }\) are from Lemma 2.3. \(\square \)

Appendix C: Proof of (3.3)

By (3.2) and Lemma B.2, we have

$$\begin{aligned} \sum _{k=0}^\infty u_k (E_{k,\alpha }P_{k-2}^{\alpha /2} + F_{k,\alpha }P_{k}^{\alpha /2} )= & {} \sum _{k=0}^\infty f_k \left( {\widehat{A}}_{k}^{\alpha /2-1} P_{k-2}^{\alpha /2} + {\widehat{C}}_{k}^{\alpha /2-1} P_{k}^{\alpha /2}\right) . \end{aligned}$$

Here \(E_{k,\alpha }\), \(F_{k,\alpha }\) are from Lemma 2.5 and \({\widehat{A}}_{k}^{\alpha /2-1}\), \({\widehat{C}}_{k}^{\alpha /2-1}\) are defined in Lemma B.2. Thus, multiplying by \(P_{n}^{\alpha /2}\) over both sides of the last equation and by the orthogonality of the Jacobi polynomials, we have

$$\begin{aligned} E_{n+2,\alpha } u_{n+2} + F_{n,\alpha } u_n = {\widehat{A}}_{n+2}^{\alpha /2-1} f_{n+2} + {\widehat{C}}_{n}^{\alpha /2-1} f_n, \quad n\ge 0, \end{aligned}$$

or equivalently for \(n\ge 0\),

$$\begin{aligned} {\widehat{A}}_{n+2}^{\alpha /2-1} u_{n+2} + {\widehat{C}}_{n}^{\alpha /2-1} u_n = D_{n,\alpha }^{-1}\big ( {\widehat{A}}_{n+2}^{\alpha /2} f_{n+2} + {\widehat{C}}_{n}^{\alpha /2} f_n\big ). \end{aligned}$$
(C.1)

Multiplying both sides of (C.1) by \(P_n^{\alpha /2}\), adding all resulting equations, we have

$$\begin{aligned} \sum _{n=0}^\infty ({\widehat{A}}_{n+2}^{\alpha /2-1} u_{n+2} + {\widehat{C}}_{n}^{\alpha /2-1} u_n) P_{n}^{\alpha /2 } =\sum _{n=0}^\infty D_{n,\alpha }^{-1}\big ( {\widehat{A}}_{n+2}^{\alpha /2} f_{n+2} + {\widehat{C}}_{n}^{\alpha /2} f_n\big )P_{n}^{\alpha /2 }. \end{aligned}$$

Applying Lemma B.2 leads to

$$\begin{aligned} \sum _{n=0}^\infty u_n P_{n}^{\alpha /2-1} =\sum _{n=0}^\infty D_{n,\alpha }^{-1} f_{n} P_{n}^{\alpha /2-1} + \sum _{n=0}^\infty f_{n+2} \left( D_{n,\alpha }^{-1}-D_{n+2,\alpha }^{-1}\right) {\widehat{A}}_{n+2}^{\alpha /2-1} P_{n}^{\alpha /2}. \end{aligned}$$

Thus we have from the orthogonality of the Jacobi polynomials that

$$\begin{aligned} u_n =D_{n,\alpha }^{-1}f_{n} + \left( h_{n}^{\alpha /2-1}\right) ^{-1} \sum _{k=n}^\infty f_{k+2} \left( D_{k,\alpha }^{-1}-D_{k+2,\alpha }^{-1}\right) {\widehat{A}}_{k+2}^{\alpha /2-1} (P_{k}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}}. \end{aligned}$$

By the fact that \(P_n^{\beta ,\beta }(-x)= (-1)^nP_n^{\beta ,\beta }(x)\), we have \((P_{k}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}}=0\) if \(\left| n-k\right| \) is an odd number. Further, the orthogonality of Jacobi polynomials leads to \((P_{k}^{\alpha /2},P_{n}^{\alpha /2-1})_{\omega ^{\alpha /2-1}}=0\) if \(n>k\). Then we obtain (3.3).

Appendix D: Estimates of Products of Functions in Weighted Spaces

Lemma D.1

Let \(u=v\omega ^{\alpha /2}\) with \(v\in B^{\beta }_{ {\alpha /2}}(I) \), \(0<\beta \le \alpha \le 2\). Then \(u\in B^{\beta }_{ {\alpha /2}}(I)\).

Lemma D.2

If \(v\in B^{\beta }_{ {\alpha /2-1}}(I) \), then \(u=v\omega ^{\alpha /2}\in B^{\beta }_{ {\alpha /2-1}}(I)\), when \(0<\beta \le \alpha \le 2\) and \(\beta \ne \alpha /2\).

Lemma D.3

Let \(u=v\omega ^{\alpha /2}\) with \(v\in B^{\beta }_{ {\alpha /2-1}}(I) \), \(0\le \beta \le \alpha +1\), \(0<\alpha \le 2\). Then \(u\in B^{\beta }_{ {\alpha /2}}(I) \) when \(\beta \ne \alpha /2\).

The proofs of these lemmas are similar and we only present the proof of Lemma D.1.

We need an equivalent definition of the weighted Sobolev space. In [17], it is shown that the norm in \(B_{\theta }^s(I)\) (\(s=m+\sigma \), \(0<\sigma <1\) and \(s\ne 1+\theta \) if \(-1<\theta <0\)) is equivalent to the following

$$\begin{aligned} \left\| u\right\| _{s,\omega ^{\theta },B}= \big ( \left\| u\right\| _{m,\omega ^{\theta },B}^2 + \iint _{\Omega _{I,a}} \omega ^{\theta +s}\frac{\left| u^{(m)}(x) - u^{(m)}(y)\right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \big )^{1/2}, \end{aligned}$$
(D.1)

where for \(a>1\), \(\Omega _{I,a}\) is a subset of \(I\times I\) and specifically

$$\begin{aligned} \Omega _{I,a} = \left\{ (x,y)\in I \times I | a^{-1}(1-\left| x\right| )< 1 -{{\text {sgn}}(x)}y < a (1-\left| x\right| ) \right\} .\end{aligned}$$

Here a can be any number larger than 1 and we take \(a=2\).

We also need the following lemma to prove Lemma D.1.

Lemma D.4

Let \(v\in L^{2}_{\omega ^{\gamma +1-\beta +2\theta }}(I)\), where \(\beta <3\), \(\gamma ,\theta \) are real numbers. Then

$$\begin{aligned}&\iint _{\Omega _{I,a}} \omega ^{\gamma }(x)v^{2}(x) \frac{\left| \omega ^{\theta }(x) - \omega ^{\theta }(y) \right| ^2}{\left| x-y\right| ^{ \beta }}\,dx\,dy\\&\quad \le C\int _{I} \omega ^{\gamma +1-\beta }(x) v^2(x) \int _{a^{-1}}^a [\partial _t g (t,\left| x\right| ,\theta )]^2 \left| 1-t\right| ^{ 2-\beta } \,dt \,dx \le C \left\| v\right\| ^2_{\omega ^{\gamma +1-\beta +2\theta }}. \end{aligned}$$

Here \(g(t,x,\theta )= t^{-2\theta } (1-x)^{\theta }(2t-(1-x))^{\theta }\).

Proof

Note that the integration domain can be split into two parts that \( \Omega _{I,a}\cap \left\{ x>0\right\} \) and \(\Omega _{I,a}\cap \left\{ x<0\right\} .\)

Let consider the case when \(x>0\). Let \(1-x=(1-y)t\). Then \(a^{-1}\le t\le a\), \(\frac{dy}{dt}=\frac{1-x}{t^2}\) and \(\left| x-y\right| = \left| 1-y -(1-x)\right| = \frac{\left| 1-t\right| }{t} (1-x) \). Let \(g(t,x,\theta )= t^{-2\theta } (1-x)^{\theta }(2t-(1-x))^{\theta }=\omega ^{\theta }(y)\). Observe that \(g(1,x,\theta )= \omega ^{\theta }(x)\). The double integral \( \Omega _{I,a}\cap \left\{ x>0\right\} \) becomes

$$\begin{aligned}&\iint _{\Omega _{I,a},x>0} \omega ^{\gamma }(x)v^{2}(x) \frac{\left| \omega ^{\theta }(x) - \omega ^{\theta }(y) \right| ^2}{\left| x-y\right| ^{ \beta }}\,dx\,dy\\&\quad = \int _{0}^1 \omega ^{\gamma }(x)(1-x)^{1-\beta } v^2(x) \int _{a^{-1}}^a \frac{ t^{\beta -2} (g(t,x,\theta ) -g(1,x,\theta ))^2 }{ \left| 1-t\right| ^{ \beta }} \,dt\,dx \\&\quad \le C \int _{0}^1 \omega ^{\gamma +1-\beta }(x) v^2(x) \int _{a^{-1}}^a (\partial _tg(t,x,\theta ) )^2 \left| 1-t\right| ^{2- \beta } \,dt \,dx. \end{aligned}$$

In the last step, we have applied Hardy’s inequality on [1, a] and \([a^{-1},1]\).

Now consider the case when \(x<0\), Let \(1+x=(1+y)t\). Then \(a^{-1}\le t\le a\), \(\frac{dy}{dt}=-\frac{1+x}{t^2}\) and \(\left| x-y\right| = \left| 1+x -(1+y)\right| = \frac{\left| 1-t\right| }{t}(1+x)\). Let \(f(t,x,\theta )= t^{-2\theta } (1+x)^{\theta }(2t-(1+x))^{\theta }=\omega ^{\theta }(y)\). Observe that \(f(1,x,\theta )= \omega ^{\theta }(x)\). The double integral \( \Omega _{I,a}\cap \left\{ x<0\right\} \) becomes

$$\begin{aligned}&\iint _{\Omega _{I,a},x<0} \omega ^{\gamma }(x)v^{2}(x) \frac{\left| \omega ^{\theta }(x) - \omega ^{\theta }(y) \right| ^2}{\left| x-y\right| ^{ \beta }}\,dx\,dy\\&\quad = \int _{-1}^0 \omega ^{\gamma }(x)(1+x)^{1-\beta } v^2(x) \int _{a^{-1}}^a \frac{ t^{\beta -2} (f(t,x,\theta ) -f(1,x,\theta ))^2 }{ \left| 1-t\right| ^{ \beta }} \,dt\,dx \\&\quad \le C\int _{0}^1 \omega ^{\gamma +1-\beta }(x) v^2(x) \int _{a^{-1}}^a (\partial _tf(t,x,\theta ) )^2 \left| 1-t\right| ^{2- \beta } \,dt \,dx. \end{aligned}$$

In the last step, we have applied Hardy’s inequality on [1, a] and \([a^{-1},1]\). Note that \(f(t,x,\theta ) = g(t,-x,\theta )\). Observe that \( \int _{a^{-1}}^a (\partial _tf(t,x,\theta ) )^2 \left| 1-t\right| ^{2- \beta } \,dt \le C (1+x)^{2\theta }\). We then obtain the desired conclusion. \(\square \)

Proof of Lemma D.1

If \(\beta =1\) or 2, we can use direct calculation to get the desired results.

When \(0<\beta <1\), \(\int _{I}u^2\omega ^{\alpha /2}\,dx = \int _{I}v^2\omega ^{3\alpha /2}\,dx \le \int _{I}v^2\omega ^{\alpha /2}\,dx\). Moreover,

$$\begin{aligned}&\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)\frac{\left| \omega ^{\alpha /2}(x)v(x) - \omega ^{\alpha /2}(y)v(y)\right| ^2}{\left| x-y\right| ^{1+2\beta }}\,dx\,dy \nonumber \\&\quad \le 2\iint _{\Omega _{I,a}} \omega ^{ \alpha /2+\beta } (x)\omega ^{\alpha }(y)\frac{\left| v(x) - v(y)\right| ^2}{\left| x-y\right| ^{1+2\beta }}\,dx\,dy \nonumber \\&\qquad +\,2\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)v^{2}(x) \frac{\left| \omega ^{\alpha /2}(x) - \omega ^{\alpha /2}(y) \right| ^2}{\left| x-y\right| ^{1+2\beta }}\,dx\,dy \nonumber \\&\quad \le 2\left\| v\right\| _{\beta , \omega ^{\alpha /2},B}^2 +\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)v^{2}(x) \frac{\left| \omega ^{\alpha /2}(x) - \omega ^{\alpha /2}(y) \right| ^2}{\left| x-y\right| ^{1+2\beta }}\,dx\,dy. \end{aligned}$$
(D.2)

By Lemma D.4, we have

$$\begin{aligned} \iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)v^{2}(x) \frac{\left| \omega ^{\alpha /2}(x) - \omega ^{\alpha /2}(y) \right| ^2}{\left| x-y\right| ^{1+2\beta }}\,dx\,dy\le & {} C \int _I \omega ^{3\alpha /2-\beta } v^{2} \,dx . \end{aligned}$$

Since \(\beta \le \alpha \), then \(\int _{I} \omega ^{3\alpha /2- \beta } v^2 \,dx\) is bounded by \(\left\| v\right\| _{\omega ^{\alpha /2}}^2\). Then (D.2) can be bounded by \(C\left\| v\right\| _{\beta ,\omega ^{\alpha /2},B}^2\).

When \(1<\beta \le \alpha <2\). \(\left\| u\right\| _{\omega ^{\alpha /2}}= \left\| \omega ^{\alpha /2}v\right\| _{\omega ^{\alpha /2}}\le \left\| v\right\| _{\omega ^{\alpha /2}}\). As \(\partial _x u = \omega ^{\alpha /2} \partial _x v + (-\alpha x)\omega ^{\alpha /2-1}v \), then

$$\begin{aligned} \left\| \partial _x u\right\| _{\omega ^{\alpha /2+1}}\le & {} \left\| \omega ^{\alpha /2}\partial _xv\right\| _{\omega ^{\alpha /2+1}} + \alpha \left\| \omega ^{\alpha /2-1}v\right\| _{\omega ^{\alpha /2+1}} \le \left\| \partial _xv\right\| _{\omega ^{\alpha /2+1}} + \alpha \left\| v\right\| _{\omega ^{ \alpha /2}}. \end{aligned}$$

It remains to check the weighted fractional-order norm. Since \(\partial _x u = \omega ^{\alpha /2} \partial _x v + (-\alpha x)\omega ^{\alpha /2-1}v \) and we only need to check that the weighted fractional norms of \(\omega ^{\alpha /2} \partial _x v \) and \( x\omega ^{\alpha /2-1}v \) are bounded. The boundedness of the weighted fractional norm of \(\omega ^{\alpha /2} \partial _x v \) is proved as follows. Let \(\beta =1+\sigma \).

$$\begin{aligned}&\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)\frac{\left| \omega ^{\alpha /2}(x)\partial _xv(x) - \omega ^{\alpha /2}(y)\partial _xv(y)\right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \\&\quad \le 2\iint _{\Omega _{I,a}} \omega ^{ \alpha /2+\beta }(x)\frac{\left| \partial _xv(x) - \partial _x v(y)\right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy\\&\qquad +\,2\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)(\partial _xv)^2\frac{\left| \omega ^{\alpha /2}(x) - \omega ^{\alpha /2}(y) \right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \\&\quad \le C\left\| v\right\| ^2_{\beta ,\omega ^{\alpha /2},B} +2\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)(\partial _xv)^2\frac{\left| \omega ^{\alpha /2}(x) - \omega ^{\alpha /2}(y) \right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy. \end{aligned}$$

By Lemma D.4, the last term is bounded by \(\int _{I} \omega ^{3\alpha /2+\beta -2\sigma }(\partial _x v)^2\,dx \), which is further bounded by \( \left\| \partial _x v\right\| ^2_{\omega ^{\alpha /2+1} } \) as \(\beta =1+\sigma \le \alpha \).

For \( x\omega ^{\alpha /2-1}v \), we only need to show the regularity of \( \omega ^{\alpha /2-1}v \). Then by the fact that \(\omega ^{\gamma }(y)\le C \omega ^{\gamma }(x) \) on \(\Omega _{I,a}\) for any \(\gamma \), we have

$$\begin{aligned}&\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)\frac{\left| \omega ^{\alpha /2-1}(x)v(x) - \omega ^{\alpha /2-1}(y)v(y)\right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \\&\quad \le 2\iint _{\Omega _{I,a}} \omega ^{ \alpha /2 +\beta }(x)\omega ^{ \alpha /2-1}(y)\frac{\left| v(x) - v(y)\right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \\&\qquad +\,2\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)v^{2}(x) \frac{\left| \omega ^{\alpha /2-1}(x) - \omega ^{\alpha /2-1}(y) \right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \\&\quad \le 2 \left\| v\right\| _{\sigma , \omega ^{\alpha /2},B}^2 + C\iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x) v^2(x) \frac{\left| \omega ^{\alpha /2-1}(x) - \omega ^{\alpha /2-1}(y) \right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy . \end{aligned}$$

By Lemma D.4, the last term is bounded by \(C \int _{I} \omega ^{3\alpha /2+\beta -2\sigma -2 }(x) v^2(x) \,dx \) and thus it is bounded by \( C \int _{I} \omega ^{\alpha /2 }(x) v^2(x) \,dx. \) Then we have shown that

$$\begin{aligned} \iint _{\Omega _{I,a}} \omega ^{\alpha /2+\beta }(x)\frac{\left| \omega ^{\alpha /2}(x)\partial _xv(x) - \omega ^{\alpha /2}(y)\partial _xv(y)\right| ^2}{\left| x-y\right| ^{1+2\sigma }}\,dx\,dy \le C \left\| v\right\| _{\beta ,\omega ^{\alpha /2},B}^2. \end{aligned}$$

Then by the definition of \(B^{\beta }_{\alpha /2}(I)\), we have \(u \in B^{\beta }_{\alpha /2}(I)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction–Diffusion Equation. J Sci Comput 78, 1087–1110 (2019). https://doi.org/10.1007/s10915-018-0800-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0800-0

Keywords

Mathematics Subject Classification

Navigation