Skip to main content
Log in

Domain Decomposition Methods Using Dual Conversion for the Total Variation Minimization with \(L^1\) Fidelity Term

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Nowadays, as large scale images become available, the necessity of parallel algorithms for image processing has been arisen. In this paper, we propose domain decomposition methods as parallel solvers for solving total variation minimization problems with \(L^1\) fidelity term. The image domain is decomposed into rectangular subdomains, where the local total variation problems are solved. We introduce the notion of dual conversion, which generalizes the framework of Chambolle–Pock primal-dual algorithm (J Math Imaging Vis 40:120–145, 2011). By the dual conversion, the TV-\(L^1\) model is transformed into an equivalent saddle point problem which has a natural parallel structure. The primal problem of the resulting saddle point problem is decoupled in the sense that each local problem can be solved independently. Convergence analysis of the proposed algorithms is provided. We apply the proposed algorithms for image denoising, inpainting, and deblurring problems. Our numerical results ensure that the proposed algorithms have good performance as parallel solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bar, L., Kiryati, N., Sochen, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70(3), 279–298 (2006)

    Article  MATH  Google Scholar 

  2. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley, Boston (1997)

    Google Scholar 

  3. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions. SMAI J. Comp. Math. 1, 29–54 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. Ser. A 159(1–2), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \({L}^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, H., Tai, X.C., Wang, L.L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imaging Sci. 8(1), 564–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

    Article  Google Scholar 

  11. Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \({L}^1 {T}{V}\) image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23(6), 2505–2526 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fornasier, M., Langer, A., Schönlieb, C.B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116(4), 645–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fornasier, M., Schönlieb, C.B.: Subspace correction methods for total variation and \({L}^1\)-minimization. SIAM J. Numer. Anal. 47(5), 3397–3428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface, 3rd edn. MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  17. Hintermüller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed \({L}^1\)/\({L}^2\) data-fidelity in image processing. SIAM J. Imaging Sci. 6(4), 2134–2173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comput. 62(2), 456–481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, C.O., Lee, J.H., Woo, H., Yun, S.: Block decomposition methods for total variation by primal-dual stitching. J. Sci. Comput. 68(1), 273–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, C.O., Nam, C.: Primal domain decomposition methods for the total variation minimization, based on dual decomposition. SIAM J. Sci. Comput. 39(2), B403–B423 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, vol. 22. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  22. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1), 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165–S187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, J., Chang, H.B., Qin, J.: Domain decomposition method for image deblurring. J. Comput. Appl. Math. 271, 401–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., Tai, X.C., Wang, L.L.: A two-level domain decomposition method for image restoration. Inverse Probl. Imaging 4(3), 523–545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ock Lee.

Additional information

The first author’s work was supported by NRF Grant funded by MSIT (NRF-2017R1A2B4011627) and the third author’s work was supported by NRF Grant funded by the Korean Government (NRF-2015-Global Ph.D. Fellowship Program).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CO., Nam, C. & Park, J. Domain Decomposition Methods Using Dual Conversion for the Total Variation Minimization with \(L^1\) Fidelity Term. J Sci Comput 78, 951–970 (2019). https://doi.org/10.1007/s10915-018-0791-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0791-x

Keywords

Mathematics Subject Classification

Navigation