Skip to main content
Log in

A Class of Low Dissipative Schemes for Solving Kinetic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce an extension of the fast semi-Lagrangian scheme developed in J Comput Phys 255:680–698 (2013) in an effort to increase the spatial accuracy of the method. The basic idea of this extension is to modify the first-order accurate transport step of the original semi-Lagrangian scheme to allow for a general piecewise polynomial reconstruction of the distribution function. For each discrete velocity, we update the solution not at cell centers, but rather at the extreme points of the spatial reconstruction, the locations of which are different for each discrete velocity and change with time. Several approaches are discussed for evaluating the collision operator at these extreme points using only cell center values by making special assumption on the spatial variation of the collision operator. The result is a class of schemes that preserves the structure of the solution over very long times when compared to existing schemes in the literature. As a proof of concept, the new method is implemented in a one-dimensional setting, using piecewise linear reconstructions of the distribution function together with a related reconstruction of the collision operator. The method is derived both for the relatively simple Bhatnagar–Gross–Krook (BGK) operator as well as for the classical Boltzmann operator. Several numerical tests are used to assess the performance of the implementation, including comparisons with the original method in J Comput Phys 255:680–698 (2013) and with classical semi-Lagrangian methods of first and second order. In convergence tests, we observe uniform second-order accuracy across all flow regimes for the BGK operator and nearly second-order accuracy for the Boltzmann operator. In addition, we observe that the method outperforms the classical semi-Lagrangian approach, in particular when resolving fine solution structures in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. We consider different locations to highlight areas where we observe the largest differences in the methods.

  2. A mesh convergence test, not reported, confirms that the wave locations for all schemes converge to the same location when the number of points increases.

References

  1. Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  2. Birsdall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. Series in Plasma Physics. Institute of Physics (IOP), London (2004)

    Google Scholar 

  3. Bobylev, A.V., Rjasanow, S.: Difference scheme for the Boltzmann equation based on the fast Fourier transform. Eur. J. Mech. B. Fluids 16(2), 293–306 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Ser. I. Math 320, 639–644 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Caflisch, R.E.: Monte Carlo and Quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  7. Cercignani, C., Illner, R., Pulvirenti, Mario: The Mathematical Theory of Dilute Gases, vol. 106. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  8. Chacón, L., del-Castillo-Negrete, D., Hauck, C.D.: An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation. J. Comp. Phys. 272, 719–746 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)

    Article  Google Scholar 

  10. Crouseilles, N., Respaud, T., Sonnendrucker, E.: A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comp. Phys. Commun. 180(10), 1730–1745 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crouseilles, N., Mehrenberger, M., Sonnendrucker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comp. Phys. 229, 1927–1953 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degond, P., Dimarco, G., Pareschi, L.: The moment guided Monte Carlo method. Int. J. Numer. Methods Fluids 67, 189–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Desvillettes, L., Mischler, S.: About the splitting algorithm for Boltzmann and BGK equations. Math. Mod. Methods Appl. Sci. 6, 1079–1101 (1996)

    Article  MATH  Google Scholar 

  14. Dimarco, G., Hauck, C., Loubère, R.: Multidimensional high order FK schemes for the Boltzmann equation (in progress)

  15. Dimarco, G.: The hybrid moment guided Monte Carlo method for the Boltzmann equation. Kin. Rel. Models 6, 291–315 (2013)

    Article  MATH  Google Scholar 

  16. Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation. J. Comput. Phys. 255, 680–698 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part II: the high order case. J. Comput. Phys. 255, 699–719 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dimarco, G., Pareschi, L.: A fluid solver independent hybrid method for multiscale kinetic equations. SIAM J. Sci. Comput. 32, 603–634 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dimarco, G., Pareschi, L.: Asymptotic preserving implicit-explicit Runge–Kutta methods for non linear kinetic equations. SIAM J. Numer. Anal. 49, 2057–2077 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dimarco, G., Pareschi, L.: Exponential Runge–Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 51, 1064–1087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dimarco, G., Loubère, R., Narski, J., Rey, T.: An efficient numerical method for solving the Boltzmann equation in multidimensions. J. Comp. Phys. 353, 46–81 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186, 457–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in N log2 N. SIAM J. Sci. Comput. 28(3), 1029–1053 (2007)

    Article  MATH  Google Scholar 

  26. Gamba, I.M., Tharkabhushaman, S.H.: Spectral-Lagrangian based methods applied to computation of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)

    Article  MathSciNet  Google Scholar 

  27. Gamba, I.M., Haack, J.R., Hauck, C.D., Hu, J.: A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 39, B658–B674 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Groppi, M., Russo, G., Stracquadanio, G.: High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14, 389414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Groppi, M., Russo, G., Stracquadanio, G.: Boundary conditions for semi-Lagrangian methods for the BGK model. Commun. Appl. Ind. Math 7(3), 138164 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Gross, E.P., Bathnagar, P.L., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  31. Güçlü, Y., Hitchon, W.N.G.: A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows. J. Comput. Phys. 231, 3289–3316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Güçlü, Y., Christlieb, A.J., Hitchon, W.N.G.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hauck, C.D., McClarren, R.G.: A collision-based hybrid method for time-dependent, linear, kinetic transport equations. Multiscale Model. Simul. 11, 1197–1227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Homolle, T., Hadjiconstantinou, N.: A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226, 2341–2358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Homolle, T., Hadjiconstantinou, N.: Low-variance deviational simulation Monte Carlo. Phys. Fluids 19, 041701 (2007)

    Article  MATH  Google Scholar 

  36. Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441454 (1999)

    Article  MathSciNet  Google Scholar 

  37. LeVeque, R.J.: Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhauser Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  38. Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamic. Math. Mod. Methods App. Sci. 10, 1121–1149 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comp. 75, 1833–1852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Palczewski, A., Schneider, J.: Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation. J. Stat. Phys. 91, 307–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865–1883 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 12171245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pareschi, L., Toscani, G.: Interacting Multi-agent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, New York (2013)

    MATH  Google Scholar 

  44. Pareschi, L., Russo, G., Toscani, G.: Fast spectral methods for the Fokker PlanckLandau collision operator. J. Comput. Phys. 165, 216236 (2000)

    Article  MATH  Google Scholar 

  45. Qiu, J.-M., Christlieb, A.: A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10, 979–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shoucri, M., Knorr, G.: Numerical integration of the Vlasov equation. J. Comput. Phys. 14, 8492 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Strang, G.: On the construction and the comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 73, 618639 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Dimarco.

Additional information

This work was partly supported by Campus France under the PHC Gallileo 2015-2016 Number 32272UL. This manuscript has been authored, in part, by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The research of C.H. was sponsored by the Office of Advanced Scientific Computing Research and performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimarco, G., Hauck, C. & Loubère, R. A Class of Low Dissipative Schemes for Solving Kinetic Equations. J Sci Comput 78, 393–432 (2019). https://doi.org/10.1007/s10915-018-0776-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0776-9

Keywords

Mathematics Subject Classification

Navigation