Skip to main content
Log in

High Accurate Finite Differences Based on RBF Interpolation and its Application in Solving Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper uses the Lagrange’s form of radial basis function (RBF) interpolation with zero-degree algebraic precision to give arbitrary order’s finite difference (RBF-FD) of interpolated function at nodes. In particular, we are interested in analyzing the approximation errors of first and second order differences based on three equidistant nodes. Then we give the best parameter values of RBF to guarantee that these two differences have the highest approximation order. As the application of those RBF formulas, the methods of solving initial value problem of first order ordinary differential equation, two-point boundary value problem and the boundary value problem of Poisson equation are investigated. Through ingeniously utilizing the differential equations to give the best parameters, the convergence order of the RBF-FD schemes constructed in this paper is two times of the polynomial finite difference schemes under the same node stencil, while the calculating time of the RBF-FD schemes has no significant increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Richard, L., Burden, J.: Douglas Faires, Numerical Analysis, 9th edn. Brooks Cole, Richard Stratton, Pacific Grove (2010)

    Google Scholar 

  2. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  3. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev space. Constr. Theory Funct. Several Var. 57, 85–100 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pan, R., Skala, V.: A two-level approach to implicit modeling with compactly supported radial basis functions. Eng. Comput. 27, 299–307 (2011)

    Article  Google Scholar 

  5. Wu, Z., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schagen, I.P.: Interpolation in two dimension-a new technique. IMA J. Appl. Math. 23, 53–59 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  9. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis function. J. Comput. Phys. 212, 99–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)

    Article  MATH  Google Scholar 

  12. Ding, H., Shu, C., Tang, D.B.: Error estimates of local multiquadric-based differential quadrature (LMQDQ) method through numerical experiments. Int. J. Numer. Methods Eng. 63, 1513–1529 (2005)

    Article  MATH  Google Scholar 

  13. Rippa, S.: An algorithm for selecting a good for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameter for RBF approximation. Numer. Algorithms 45, 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, J., Jung, J.-H.: Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters. J. Sci. Comput. 70(2), 551–575 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, J., Jung, J.-H.: A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method. Appl. Numer. Math. 112, 27–50 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial basis functions. Comput. Math. Appl. 47, 37–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation (Nos. 11271041 and 91630203) and Special Project for civil aircraft (MJ-F-2012-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhong Feng.

Appendix

Appendix

figure a
figure b
figure c
figure d
figure e
figure f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Duan, J. High Accurate Finite Differences Based on RBF Interpolation and its Application in Solving Differential Equations. J Sci Comput 76, 1785–1812 (2018). https://doi.org/10.1007/s10915-018-0684-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0684-z

Keywords

Navigation