Skip to main content
Log in

Hybridized Discontinuous Galerkin Method for Elliptic Interface Problems: Error Estimates Under Low Regularity Assumptions of Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6(2), 109–138 (1997), 1996

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  5. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49(5), 1761–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feistauer, M.: On the finite element approximation of functions with noninteger derivatives. Numer. Funct. Anal. Optim. 10(1–2), 91–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grapperhaus, M.J., Kushner, M.J.: A semianalytic radio frequency sheath model integrated into a two-dimensional hybrid model for plasma processing reactors. J. Appl. Phys. 81(2), 569–577 (1997)

    Article  Google Scholar 

  10. Grisvard.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Numerical Solution of P.D.E’s III, Proc. Third Sympos. (SYNSPADE), pp. 207–274 (1976)

  11. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  12. Huynh, L.N.T., Nguyen, N.C., Peraire, J., Khoo, B.C.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Methods Eng. 93(2), 183–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jonsson, A., Wallin, H.: Function spaces on subsets of \(R^n\). Math. Rep. 2(1), xiv+221 (1984)

  14. Kikuchi, F., Ando, Y.: A new variational functional for the finite-element method and its application to plate and shell problems. Nucl. Eng. Des. 21, 95–113 (1972)

    Article  Google Scholar 

  15. Kikuchi, F., Ando, Y.: Some finite element solutions for plate bending problems by simplified hybrid displacement method. Nucl. Eng. Des. 23, 155–178 (1972)

    Article  Google Scholar 

  16. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications (Translated from the French by Kenneth, P., Die Grundlehren der mathematischen Wissenschaften, Band 181), vol. I. Springer, New York-Heidelberg (1972)

    MATH  Google Scholar 

  17. Massjung, R.: An unfitted discontinuous Galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal. 50(6), 3134–3162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miyashita, M.: Discontinuous model with semi analytical sheath interface for radio frequency plasma. In: The 69th Annual Gaseous Electronics Conference, Session MW6-00077, vol. 61 (2016)

  19. Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oikawa, I.: Hybridized discontinuous Galerkin method with lifting operator. JSIAM Lett. 2, 99–102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Oikawa, I., Kikuchi, F.: Discontinuous Galerkin FEM of hybrid type. JSIAM Lett. 2, 49–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petzoldt, M.: Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwendungen 20(2), 431–455 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saito, N., Fujita, H.: Remarks on traces of \(H^1\)-functions defined in a domain with corners. J. Math. Sci. Univ. Tokyo 7, 325–345 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. NS is supported by JST CREST Grant Number JPMJCR15D1, Japan and JSPS KAKENHI Grant Numbers 15H03635, 15K13454 Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norikazu Saito.

Proof of Lemma 9

Proof of Lemma 9

Let \(s\in (1/2,1)\). Let \(K\in \mathcal {T}_h\) and \(e\subset \partial K\).

The fractional order Sobolev space \(H^s(K)\) is defined as

$$\begin{aligned} H^{s}(K)=\{v\in L^2(K)\mid \Vert v\Vert _{H^{s}(K)}^2=\Vert v\Vert _{L^2(K)}^2+|v|_{H^{s}(K)}^2<\infty \}, \end{aligned}$$

where

$$\begin{aligned} |v|_{H^s(K)}^2=\int \ \int _{K\times K}\frac{~|v(x)-v(y)|^2}{|x-y|^{d+2s}}~dxdy. \end{aligned}$$

It suffices to prove

$$\begin{aligned} \Vert v\Vert _{L^2(e)}^2 \le C_{s,\mathrm {T}}h_e^{-1}\left( \Vert v\Vert _{L^2(K)}^2+h_K^{2s}|v|_{H^s(K)}^2\right) \qquad (v\in H^s(K)), \end{aligned}$$
(27)

since the desired inequality (20) is a direct consequence of (27).

Suppose that \(\tilde{K}\) is the reference element in \(\mathbb {R}^d\) with \({\text {diam}}(\tilde{K})=1\). Moreover, let \(\tilde{e}\subset \partial \tilde{K}\) be a face (\(d=3\))/edge (\(d=2\)) of \(\tilde{K}\). Trace theorem implies

$$\begin{aligned} \Vert \tilde{v}\Vert _{L^2(e)}^2\le \tilde{C}\left( \Vert \tilde{v}\Vert _{L^2(\tilde{K})}^2+|\tilde{v}|_{H^{s}(\tilde{K})}^2\right) \qquad (\tilde{v}\in H^1(\tilde{K})), \end{aligned}$$

where \(\tilde{C}\) denotes an absolute positive constant. See [13, Theorem 1, §V.1.1] for example.

Suppose that \(\Phi (\xi )=B\xi +c\), \(B\in \mathbb {R}^{d\times d}\), \(c\in \mathbb {R}^d\), is the affine mapping which maps \(\tilde{K}\) onto K; \(K=\Phi (\tilde{K})\). We know

$$\begin{aligned} \Vert B\Vert =\sup _{|\xi |=1}|B\xi |\le \frac{h_K}{\tilde{\rho }},\quad \Vert B^{-1}\Vert \le \frac{\tilde{h}}{\rho _K},\quad d\xi =\frac{{\text {meas}}_{d}(\tilde{K})}{{\text {meas}}_{d}({K})} dx, \end{aligned}$$

where \(\tilde{h}={h}_{\tilde{K}}\), \(\tilde{\rho }={\rho }_{\tilde{K}}\) and \({\text {meas}}_d(K)\) denotes the \(\mathbb {R}^d\)-Lebesgue measure of K. Moreover,

$$\begin{aligned} \frac{|x|}{|B^{-1}x|}\le \sup _{\xi \in \mathbb {R}^d} \frac{|B\xi |}{|\xi |}=\Vert B\Vert \qquad (x\in \mathbb {R}^d,x\ne 0). \end{aligned}$$

We recall that there exists a positive constant \(\nu _2\) that independent of h such that \(h_K/\rho _K\le \nu _2\) (\(\forall K\in \forall \mathcal {T}_h\in \{\mathcal {T}_h\}_h\)) by the shape-regularity of the family of triangulations.

Now we can state the proof of (27). By the density, it suffices to consider (27) for \(v\in C^1(K)\). Set \(\tilde{v}=v\circ \Phi \in C^1(\tilde{K})\). Then,

$$\begin{aligned} \int _{\tilde{K}}\tilde{v}^2d\xi = \frac{{\text {meas}}_{d}(\tilde{K})}{{\text {meas}}_{d}({K})} \int _{{K}}{v}^2dx \le C \rho _K^{-d}\Vert v\Vert _{L^2(K)}^2 \end{aligned}$$

and

$$\begin{aligned} \int \int _{\tilde{K}\times \tilde{K}}\frac{~|\tilde{v}(\xi )-\tilde{v}(\eta )|^2}{|\xi -\eta |^{d+2s}}~d\xi d\eta&\le \left( \frac{{\text {meas}}_{d}(\tilde{K})}{{\text {meas}}_{d}({K})}\right) ^2 \int \int _{{K}\times {K}}\frac{~|v(x)-v(y)|^2}{~|B^{-1}x-B^{-1}y|^{d+2s}}~dxdy \\&\le C\rho _K^{-2d} \cdot \Vert B\Vert ^{d+2s}\int \int _{{K}\times {K}}\frac{~|v(x)-v(y)|^2}{~|x-y|^{d+2s}}~dxdy\\&\le Ch_K^{2s}\nu _2^d\rho _K^{-d} \int \ \int _{{K}\times {K}}\frac{~|v(x)-v(y)|^2}{~|x-y|^{d+2s}}~dxdy. \end{aligned}$$

Using those inequalities, we have

$$\begin{aligned} \Vert \tilde{v}\Vert _{L^2(e)}^2&= \frac{{\text {meas}}_{d-1}(e)}{{\text {meas}}_{d-1}(\tilde{e})} \int _{\tilde{e}}\tilde{v}(\xi )^2~d\xi \\&\le Ch_e^{d-1}\cdot \tilde{C}\left( \int _{\tilde{K}}\tilde{v}^2d\xi + \int \int _{\tilde{K}\times \tilde{K}}\frac{~|v(\xi )-v(\eta )|^2}{|\xi -\eta |^{d+2s}}~d\xi d\eta \right) .\\&\le C\nu _1^dh_e^{-1} \left( \Vert v\Vert _{L^2(K)}^2+h_K^{2s}|v|_{H^s(K)}^2 \right) , \end{aligned}$$

which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyashita, M., Saito, N. Hybridized Discontinuous Galerkin Method for Elliptic Interface Problems: Error Estimates Under Low Regularity Assumptions of Solutions. J Sci Comput 76, 1657–1673 (2018). https://doi.org/10.1007/s10915-018-0678-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0678-x

Keywords

Mathematics Subject Classification

Navigation