Skip to main content
Log in

A Concurrent Global–Local Numerical Method for Multiscale PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new hybrid numerical method for multiscale partial differential equations, which simultaneously captures the global macroscopic information and resolves the local microscopic events over regions of relatively small size. The method couples concurrently the microscopic coefficients in the region of interest with the homogenized coefficients elsewhere. The cost of the method is comparable to the heterogeneous multiscale method, while being able to recover microscopic information of the solution. The convergence of the method is proved for problems with bounded and measurable coefficients, while the rate of convergence is established for problems with rapidly oscillating periodic or almost-periodic coefficients. Numerical results are reported to show the efficiency and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdulle, A., Weinan, E., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Jecker, O.: An optimization based heterogeneous to homogeneous coupling method. Commun. Math. Sci. 13, 1639–1648 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Jecker, O., Shapeev, A.: An optimization based coupling method for multiscale problems. Multisc. Model. Simul. 14, 1377–1416 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, London (2003)

    MATH  Google Scholar 

  5. Apoung Kamga, J.-B., Pironneau, O.: Numerical zoom for multiscale problems with an application to nuclear waste disposal. J. Comput. Phys. 224, 403–413 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Lipton, R.: L\(^2\)-global to local projection: an approach to multiscale analysis. Math. Models Methods Appl. Sci. 21, 2211–2226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuška, I., Lipton, R., Stuebner, M.: The penetraion function and its application to microscale problems. BIT Numer. Math. 48, 167–187 (2008)

    Article  MATH  Google Scholar 

  8. Babuška, I., Melenk, J.M.: The partition of unity finite element method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  9. Babuška, I., Motamed, M., Tempone, R.: A stochastic multiscale mehod for elastodynamic wave equation arising from fivre composites. Comput. Methods Appl. Mech. Eng. 276, 190–211 (2014)

    Article  Google Scholar 

  10. Ben Dhia, H.: Problèmes mécaniques multi-échelles: la méthode Arlequin. C. R. Acad. Sci. Paris Série II b 326, 899–904 (1998)

    MATH  Google Scholar 

  11. Ben Dhia, H., Rateau, H.: The Arlequin method as a flexible engineering design tools. Int. J. Numer. Methods Eng. 62, 1442–1462 (2005)

    Article  MATH  Google Scholar 

  12. Benssousan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis of Periodic Structures. North-Holland, Amsterdam (1978)

    Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  14. Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80, 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Math. Sci. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Discacciati, M., Gervasio, P., Quarteroni, A.: Interface control domain decomposition methods for heterogeneous problems. Int. J. Numer. Methods Fluids 76, 471–496 (2014)

    Article  MathSciNet  Google Scholar 

  17. Du, Q., Gunzburger, M.D.: A gradient method approach to optimization-based multidisciplinary simulations and nonoverlapping domain decomposition algorithms. SIAM J. Numer. Anal. 37, 1513–1541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weinan, E.: Principles of Multiscale Modeling. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  19. Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367–450 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Weinan, E., Ming, P.B., Zhang, P.W.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gervasio, P., Lions, J.L., Quarteroni, A.: Heterogeneous coupling by virtual control methods. Numer. Math. 90, 241–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glowinski, R., He, J., Rappaz, J., Wagner, J.: A multi-domain method for solving numerically multi-scale elliptic problems. C. R. Math. Acad. Sci. Paris 338, 741–746 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guzmán, J., Sánchez, M.A., Sarkis, M.: On the accuracy of finite element approximations to a class of interface problems. Math. Comput. 85, 2071–2098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenig, C., Lin, F.H., Shen, Z.W.: Convergence rates in L\(^2\) for elliptic homogenization problems. Arch. Ration. Mech. Anal. 203, 1009–1036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuberry, P., Lee, H.: A decoupling algorithm for fluid-structure interaction problems based on optimization. Comput. Methods Appl. Mech. Eng. 267, 594–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, R., Ming, P.B., Tang, F.Y.: An efficient high order heterogeneous multiscale method for elliptic problems. Multisc. Model. Simul. 10, 259–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lozinski, A., Pironneau, O.: Numerical zoom for advection diffusion problems with localized multiscales. Numer. Methods Partial Differ. Equ. 27, 197–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, J., Ming, P.B.: Convergence of a force-based hybrid method in three dimensions. Commun. Pure Appl. Math. 66, 83–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, J., Ming, P.B.: Convergence of a force-based hybrid method with planar sharp interface. SIAM J. Numer. Anal. 52, 2005–2026 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Meyers, N.G.: An L\(^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17(3), 189–206 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Ming, P.B., Yue, X.Y.: Numerical methods for multiscale elliptic problems. J. Comput. Phys. 214, 421–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Murat, F., Tartar, L.: H-convergence. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modeling of Composite Materials, pp. 21–43. Birkhäuser, Boston (1997)

    Chapter  Google Scholar 

  35. Nitsche, J.A.: Ein kriterium für die quasioptimalität ds Ritzschen verfahrens. Nume. Math. 11, 346–348 (1968)

    Article  MATH  Google Scholar 

  36. Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comput. 28, 937–958 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oden, J.T., Vemaganti, K.S.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials, I. Error estimates and adaptive algorithms. J. Comput. Phys. 164, 22–47 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oden, J.T., Vemaganti, K.S.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials, II. A computational environment for adaptively modeling of heterogeneous elastic solids. Computer Methods Appl. Mech. Eng. 190, 6089–6124 (2001)

    Article  MATH  Google Scholar 

  39. Schwatz, A.H.: Perturbations of forms and error estimates for the finite element method at a point, with an application to improved superconvergence error estimates for subspaces that are symmetric with respect to a point. SIAM J. Numer. Anal. 42, 2342–2365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen, Z.W.: Convergence rates and Hölder estimates in almost-periodic homogenization of elliptic systems. Anal. PDE 8, 1565–1601 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, (Editor), Res. Notes in Math., Vol. 39, Pitman, San Francisco, Calif., pp. 136–212 (1979)

  42. Tartar, L.: The General Theory of Homogenization: A Personal Introduction. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of Lu is supported in part by the National Science Foundation under grant DMS-1454939. The work of Ming was supported by the National Natural Science Foundation of China for Distinguished Young Scholars 11425106, and by the National Natural Science Foundation of China grant 91230203, and by the funds from Creative Research Groups of China through grant 11321061, and by the support of CAS National Center for Mathematics and Interdisciplinary Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbing Ming.

Appendix A: Example

Appendix A: Example

To better appreciate the estimates (3.4) and (3.5), which are crucial in our analysis, let us consider a one-dimensional problem

$$\begin{aligned} \left\{ \begin{array}{ll} -\left( a^{\,\varepsilon }(x)u'(x)\right) ^{\prime }=0,&{}\quad x\in (0,1),\\ u(0)=0,&{}\quad a^{\,\varepsilon }(1)u'(1)=1, \end{array}\right. \end{aligned}$$

where \(a^{\,\varepsilon }(x)=2+\sin (x/\varepsilon )\). A direct calculation gives that the effective coefficient \(\mathcal {A}=\sqrt{3}\) and the solution of the homogenized problem is \(u_0(x)=x/\mathcal {A}\).

We consider a uniform mesh given by

$$\begin{aligned} x_0=0<x_1=h<\cdots<x_i=ih<\cdots <x_{2N}=1, \end{aligned}$$

where \(h=1/(2N)\). The finite element space \(X_h\) is simply the piecewise linear element associated with the above mesh with zero boundary condition at \(x=0\).

Case \(h \gg \varepsilon \). We firstly consider the case that \(h\gg \varepsilon \), while the precise relation between h and \(\varepsilon \) will be made clear below. Denote \(v_h(x_j)=v_j\) and the interval \(I_j=(x_{j-1},x_j)\), the mean of the coefficients \(b^{\,\varepsilon }\) over each \(I_j\) is denoted by \(b_j={\int \negthickspace \negthickspace \negthickspace \negthinspace -}_{I_j}b^{\,\varepsilon }(x)\,\mathrm {d}x\).

We define the transition function \(\rho \) as a piecewise linear function that is supported in \((-2L,2L)\), where L is a fixed number with \(0<L<1/4\). Without loss of generality, we assume that \(L=Mh\) with M an integer. In particular,

$$\begin{aligned} \rho (x)=\left\{ \begin{array}{ll} 0&{}\quad 0\le x\le x_{N-2M},\\ \dfrac{x-x_{N-2M}}{L}&{}\quad x_{N-2K}\le x\le x_{N-M},\\ 1&{}\quad x_{N-M}\le x\le x_{N+M},\\ \dfrac{x_{N+2M}-x}{L}&{}\quad x_{N+M}\le x\le x_{N+2M},\\ 0&{}\quad x_{N+2M}\le x\le x_{2N}=1. \end{array}\right. \end{aligned}$$

By construction, we get the size of the support of \(\rho \) is \(\left|K\right|=4L\).

We easily obtain the linear system for \(\{v_j\}_{j=1}^{2N}\) as

$$\begin{aligned} \left\{ \begin{array}{ll} -\,b_jv_{j-1}+(b_j+b_{j+1})v_j-b_{j+1}v_{j+1}=0,&{}\quad j=1,\cdots ,2N-1,\\ -\,b_{2N}v_{2N-1}+b_{2N}v_{2N}=h.&{} \end{array}\right. \end{aligned}$$

Define \(c_j{:}=(v_j-v_{j-1})b_j/h\), we rewrite the above equation as

$$\begin{aligned} c_j-c_{j-1}=0,\quad j=1,\cdots ,2N-1,\qquad c_{2N}=1. \end{aligned}$$

Hence \(c_j=1\) for \(j=1,\cdots ,2N\), and the above linear system reduces to

$$\begin{aligned} (v_j-v_{j-1})b_j=h. \end{aligned}$$

Using \(v_0=0\), we obtain

$$\begin{aligned} v_j=h\sum _{i=1}^j\dfrac{1}{b_i}. \end{aligned}$$
(A.1)

Observing that \(v_h(x)=u_0(x)\) for \(x\in [0,x_{N-2M}]\) because they are linear functions that coincide at all the nodal points \(x_i\) for \(i=0,\cdots , N-2M\).

For \(x\in I_{N-2M+j+1}\), we obtain

$$\begin{aligned} u_0(x)-v_h(x)=h\sum _{i=1}^j\left( \dfrac{1}{\mathcal {A}}-\dfrac{1}{b_{N-2M+i}}\right) +(x-x_{N-2M+j})\left( \dfrac{1}{\mathcal {A}}-\dfrac{1}{b_{N-2M+j+1}}\right) . \end{aligned}$$

Define \(S_j{:}=h\sum _{i=1}^j\left( \dfrac{1}{\mathcal {A}}-\dfrac{1}{b_{N-2M+i}}\right) \), we rewrite the above equation as

$$\begin{aligned} u_0(x)-v_h(x)=\dfrac{x_{N-2M+j+1}-x}{h}S_j+\dfrac{x-x_{N-2M+j+1}}{h}S_{j+1}, \end{aligned}$$
(A.2)

which immediately yields

$$\begin{aligned} \begin{aligned} \int _{x_{N-2M}}^{x_{N-M}}\left|u_0'(x)-v_h'(x)\right|^2\,\mathrm {d}x&=h\sum _{j=1}^M\left|\dfrac{1}{\mathcal {A}}-\dfrac{1}{b_{N-2M+j}}\right|^2\\&\ge \dfrac{h}{27}\sum _{j=1}^M\left|\mathcal {A}-b_{N-2M+j}\right|^2. \end{aligned} \end{aligned}$$
(A.3)

This is the starting point of later derivation. A direct calculation gives

$$\begin{aligned} b_{N-2M+j}-\mathcal {A}&={\int \negthickspace \negthickspace \negthickspace \negthinspace -}_{I_{N-2M+j}}\rho (x)(a^\varepsilon (x)-\mathcal {A})\,\mathrm {d}x\\&=\dfrac{2-\mathcal {A}}{2}\bigl (\rho (x_{N-2M+j-1})+\rho (x_{N-2M+j})\bigr )+{\int \negthickspace \negthickspace \negthickspace \negthinspace -}_{I_{N-2M+j}}\sin \dfrac{x}{\varepsilon }\,\mathrm {d}x\\&=\dfrac{(2-\mathcal {A})h}{2L}(2j-1)+{\int \negthickspace \negthickspace \negthickspace \negthinspace -}_{I_{N-2M+j}}\sin \dfrac{x}{\varepsilon }\,\mathrm {d}x, \end{aligned}$$

and an integration by parts yields

$$\begin{aligned} {\int \negthickspace \negthickspace \negthickspace \negthinspace -}_{I_{N-2M+j}}\sin \dfrac{x}{\varepsilon }\,\mathrm {d}x&=\dfrac{2j\varepsilon }{L}\sin \dfrac{h}{2\varepsilon }\sin \dfrac{x_{N-2M+j-1/2}}{\varepsilon }\\&\quad -\dfrac{\varepsilon }{L}\cos \dfrac{x_{N-2M+j-1}}{\varepsilon }+\dfrac{\varepsilon ^2}{Lh}\left( \cos \dfrac{x_{N-2M+j-1}}{\varepsilon } -\cos \dfrac{x_{N-2M+j}}{\varepsilon }\right) . \end{aligned}$$

Combining the above two equations, we obtain

$$\begin{aligned} b_{N-2M+j}-\mathcal {A}=\dfrac{(2-\mathcal {A})h}{2L}(2j-1)+\dfrac{2j\varepsilon }{L}\sin \dfrac{h}{2\varepsilon }\sin \dfrac{x_{N-2M+j-1/2}}{\varepsilon }+\text {REM}, \end{aligned}$$
(A.4)

where the remainder term

$$\begin{aligned} \text {REM}{:}=-\dfrac{\varepsilon }{L}\cos \dfrac{x_{N-2M+j-1}}{\varepsilon }+\dfrac{\varepsilon ^2}{Lh}\left( \cos \dfrac{x_{N-2M+j-1}}{\varepsilon } -\cos \dfrac{x_{N-2M+j}}{\varepsilon }\right) , \end{aligned}$$

which can be bounded as

$$\begin{aligned} \left|\text {REM}\right|&\le \dfrac{\varepsilon }{L}+\dfrac{2\varepsilon ^2}{Lh}\left|\sin \dfrac{h}{2\varepsilon }\right|\left|\cos \dfrac{x_{N-2M+j-1/2}}{\varepsilon }\right|\\&\le \dfrac{\varepsilon }{L}+\dfrac{2\varepsilon ^2}{Lh}\dfrac{h}{2\varepsilon }=\dfrac{2\varepsilon }{L}. \end{aligned}$$

Note that \(\sum _{j=1}^M(2j-1)^2=M(4M^2-1)/3,\) and

$$\begin{aligned} \sum _{j=1}^Mj^2\sin ^2\dfrac{x_{N-2M+j-1/2}}{\varepsilon } \le \sum _{j=1}^Mj^2=\dfrac{1}{6}M(M+1)(2M+1). \end{aligned}$$

Summing up all the above estimates and using the elementary inequality

$$\begin{aligned} (a+b+c)^2+b^2+c^2\ge \dfrac{a^2}{3}\quad \text {for any}\quad a,b,c\in \mathbb {R}, \end{aligned}$$

we have, for \(M\ge 3\),

$$\begin{aligned} \sum _{j=1}^M\left|\mathcal {A}-b_{N-2M+j}\right|^2&\ge \dfrac{1}{3}\dfrac{(2-\mathcal {A})^2h^2}{4L^2}\sum _{j=1}^M(2j-1)^2- \dfrac{4\varepsilon ^2}{L^2}\sin ^2\dfrac{h}{2\varepsilon }\sum _{j=1}^Mj^2\\&\quad \sin ^2\dfrac{x_{N-2M+j-1/2}}{\varepsilon }-\dfrac{4Mh\varepsilon ^2}{L^2}\\&\ge \dfrac{(2-\mathcal {A})^2h^2}{36L^2}M(4M^2-1)-\dfrac{2\varepsilon ^2}{3L^2}M(M+1)(2M+1)-\dfrac{4M\varepsilon ^2}{L^2}\\&\ge \dfrac{(2-\mathcal {A})^2h^2}{36L^2}M(4M^2-1)-\dfrac{2\varepsilon ^2}{3L^2}M(4M^2-1)\\&\ge \dfrac{(2-\mathcal {A})^2h^2}{72L^2}M(4M^2-1) \end{aligned}$$

provided that \(\varepsilon /h\le (2-\mathcal {A})/(4\sqrt{3})\). Substituting the above estimate into (A.3), we obtain

$$\begin{aligned} \int _{x_{N-2M}}^{x_{N-M}}\left|u_0'(x)-v_h'(x)\right|^2\,\mathrm {d}x&\ge \dfrac{(2-\mathcal {A})^2h^3}{1944L^2}M(4M^2-1)\\&\ge \dfrac{(2-\mathcal {A})^2h^3}{648L^2}M^3=\dfrac{(2-\mathcal {A})^2}{648}L. \end{aligned}$$

This implies

$$\begin{aligned} \Vert u_0'-v_h'\Vert _{L^2(1/2-2L,1/2-L)}\ge \dfrac{2-\mathcal {A}}{18\sqrt{2}}L^{1/2}=\dfrac{2-\mathcal {A}}{36\sqrt{2}}\left|K\right|^{1/2}. \end{aligned}$$

This shows that the factor \(\left|K\right|^{1/2}\) in (3.4) is sharp. The same argument shows the size-dependence of \(\left|K\right|\) in the estimate (3.5).

Case \(h \ll \varepsilon \). We next consider the case when \(h\ll \varepsilon \). In fact, we may employ coarser mesh with mesh size H outside the defect region with \(H\gg h\), while a finer mesh with mesh size h inside the defect region. The above derivation remains true and we still have \(v_h(x)=u_0(x)\) for \(x\in [0,1/2-2L]\). We start from the inequality (A.3). Notice that the dominant term in the expression of \(b_{N-2M+j}-\mathcal {A}\) is the oscillatory one in (A.4). Denote \(\phi =2h/\varepsilon \). A direct calculation gives

$$\begin{aligned}&\sum _{j=1}^Mj^2\sin ^2\dfrac{x_{N-2M+j-1/2}}{\varepsilon }=\dfrac{1}{2}\sum _{j=1}^Mj^2-\dfrac{1}{2}\sum _{j=1}^M\cos \dfrac{x_{2N-4M+2j-1}}{\varepsilon }\\&\quad =\dfrac{1}{12}M(M+1)(2M+1)\\&\qquad -\biggl \{\dfrac{M(M+1)}{4\sin (\phi /2)}\sin [(N-M)\phi ]+\dfrac{M+1}{4\sin ^2\phi /2}\cos [(N-M)\phi ]\cos \dfrac{\phi }{2}\\&\qquad -\dfrac{\cos [(N-3M/2-1)\phi ]\cos \dfrac{\phi }{2}\sin \dfrac{M+1}{2}\phi }{4\sin ^3(\phi /2)}\biggr \}. \end{aligned}$$

We assume that

$$\begin{aligned} \sin \dfrac{\phi }{2}\ge \dfrac{5}{M}. \end{aligned}$$
(A.5)

Denote the terms in the curled bracket by I. Given (A.5), using the elementary inequalities \(2x/\pi \le \sin x\le x\) for \(x\in [0,\pi /2]\), we bound I as

$$\begin{aligned} \left|I\right|&\le \dfrac{(M+1)M}{4\sin (\phi /2)}+\dfrac{M+1}{4\sin ^2(\phi /2)}+\dfrac{(M+1)\phi /2}{4\sin ^3(\phi /2)}\\&\le \dfrac{(M+1)M}{4\sin (\phi /2)}+\dfrac{M+1}{4\sin ^2(\phi /2)}+\dfrac{(M+1)\pi }{8\sin ^2(\phi /2)}\\&\le \dfrac{M^2(M+1)}{12}, \end{aligned}$$

which immediately yields

$$\begin{aligned} \sum _{j=1}^Mj^2\sin ^2\dfrac{x_{N-2M+j-1/2}}{\varepsilon }\ge \dfrac{M^3}{12}. \end{aligned}$$

This implies

$$\begin{aligned} \dfrac{4\varepsilon ^2}{L^2}\sin ^2\dfrac{h}{2\varepsilon }\sum _{j=1}^Mj^2\sin ^2\dfrac{x_{N-2M+j-1/2}}{\varepsilon }\ge \dfrac{4\varepsilon ^2}{L^2}\left( \dfrac{2}{\pi }\dfrac{h}{2\varepsilon }\right) ^2\dfrac{M^3}{12}=\dfrac{M}{3\pi ^2}. \end{aligned}$$

Note also

$$\begin{aligned} \dfrac{(2-\mathcal {A})^2h^2}{4L^2}\sum _{j=1}^M(2j-1)^2\le \dfrac{(2-\mathcal {A})^2}{3}M. \end{aligned}$$

Combining the above two estimates, we obtain

$$\begin{aligned} \sum _{j=1}^M\left|\mathcal {A}-b_{N-2M+j}\right|^2&\ge \dfrac{1}{2}\sum _{j=1}^M \left( \dfrac{2\varepsilon }{L}\sin \dfrac{h}{2\varepsilon }j\sin \dfrac{x_{N-2M+j-1/2}}{\varepsilon }+\dfrac{(2-\mathcal {A})h}{2L}(2j-1)\right) ^2\\&\quad -\dfrac{4M\varepsilon ^2}{L^2}\\&\ge \left( \dfrac{1}{6}\left( 1/\pi +\mathcal {A}-2\right) ^2-\dfrac{4\varepsilon ^2}{L^2}\right) M>0 \end{aligned}$$

provided that

$$\begin{aligned} h>\dfrac{\sqrt{6}\varepsilon }{(1/\pi +\mathcal {A}-2)M}. \end{aligned}$$

This condition suffices for the validity of (A.5), which is satisfied under a weaker condition \( h>{5\pi \varepsilon }/(2M). \)

Substituting the above estimate into (A.3), we may find that there exists C depending only on \(\mathcal {A}\) such that

$$\begin{aligned} \Vert u_0'-v_h'\Vert _{L^2(1/2-2L,1/2-L)}\ge CL^{1/2}=\dfrac{C}{2}\left|K\right|^{1/2}. \end{aligned}$$

This proves that the factor \(\left|K\right|^{1/2}\) is sharp for (3.4). The same argument shows the size-dependence of \(\left|K\right|\) in the estimate (3.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lu, J. & Ming, P. A Concurrent Global–Local Numerical Method for Multiscale PDEs. J Sci Comput 76, 1188–1215 (2018). https://doi.org/10.1007/s10915-018-0662-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0662-5

Keywords

Mathematics Subject Classification

Navigation