Skip to main content
Log in

A p-Adaptive Local Discontinuous Galerkin Level Set Method for Willmore Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The level set method is often used to capture interface behavior in two or three dimensions. In this paper, we present a combination of a local discontinuous Galerkin (LDG) method and a level set method for simulating Willmore flow. The LDG scheme is energy stable and mass conservative, which are good properties compared with other numerical methods. In addition, to enhance the efficiency of the proposed LDG scheme and level set method, we employ a p-adaptive local discontinuous Galerkin technique, which applies high order polynomial approximations around the zero level set and low order ones away from the zero level set. A major advantage of the level set method is that the topological changes are well defined and easily performed. In particular, given the stiffness and high nonlinearity of Willmore flow, a high order semi-implicit Runge–Kutta method is employed for time discretization, which allows larger time steps. These equations at the implicit time level are linear, we demonstrate an efficient and practical multigrid solver to solve the equations. Numerical examples are given to illustrate that the combination of the LDG scheme and level set method provides an efficient and practical approach to simulate the Willmore flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beneš, M., Mikula, K., Oberhuber, T., Ševčovič, D.: Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves. Comput. Vis. Sci. 12, 307–317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time-dependent partial differential equations. J. Sci. Comput. 68, 975–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, 21–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces Free Boundaries 6, 361–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, R., Xu, Y.: Efficient solvers of discontinuous Galerkin discretization for the Cahn–Hilliard equations. J. Sci. Comput. 58, 380–408 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, R., Filbet, F., Xu, Y.: Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs. J. Sci. Comput. 68, 1029–1054 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oberhuber, T.: Numerical solution for the Willmore flow of graphs. In: Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005, COE Lect. Note, 3, Kyushu Univ. The 21 Century COE Program, Fukuoka, 2006, pp. 126–138

  13. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Osher, S., Fedkiw, R.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Book  MATH  Google Scholar 

  16. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent Trends in Numerical Analysis, Adv. Theory Comput. Math. 3, Nova Sci. Publ., Huntington, NY, 269–288 (2001)

  17. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479. Los Alamos Scientific Laboratory, Los Alamos (1973)

  18. Simonett, G.: The Willmore flow near spheres. Differ. Integral Equ. 14, 1005–1014 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2005)

    MATH  Google Scholar 

  20. Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40, 375–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Yan, J., Osher, S.: Discontinuous Galerkin level set method for interface capturing. UCLA report (2005)

Download references

Acknowledgements

R. Guo acknowledges support from labex MILYON, Université Claude Bernard Lyon 1, France. This work has also been supported by NSFC Grant No. 11601490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Filbet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Filbet, F. A p-Adaptive Local Discontinuous Galerkin Level Set Method for Willmore Flow. J Sci Comput 76, 1148–1167 (2018). https://doi.org/10.1007/s10915-018-0656-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0656-3

Keywords

Navigation