Skip to main content
Log in

Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Entropy conservation and stability of numerical methods in gas dynamics have received much interest. Entropy conservative numerical fluxes can be used as ingredients in two kinds of schemes: firstly, as building blocks in the subcell flux differencing form of Fisher and Carpenter (Technical Report NASA/TM-2013-217971, NASA, 2013; J Comput Phys 252:518–557, 2013) and secondly (enhanced by dissipation) as numerical surface fluxes in finite volume like schemes. The purpose of this article is threefold. Firstly, the flux differencing theory is extended, guaranteeing high-order for general symmetric and consistent numerical fluxes and investigating entropy stability in a generalised framework of summation-by-parts operators applicable to multiple dimensions and simplex elements. Secondly, a general procedure to construct affordable entropy conservative fluxes is described explicitly and used to derive several new fluxes. Finally, robustness properties of entropy stable numerical fluxes are investigated and positivity preservation is proven for several entropy conservative fluxes enhanced with local Lax–Friedrichs type dissipation operators. All these theoretical investigations are supplemented with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 195–285. Springer, Berlin (1999)

    Chapter  Google Scholar 

  2. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Springer, New York (2004)

    Book  MATH  Google Scholar 

  3. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H.: Means generated by an integral. Math. Mag. 78(5), 397–399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coquel, F., Godlewski, E., Perthame, B., In, A., Rascle, P.: Some new Godunov and relaxation methods for two-phase flow problems. In: Toro, E.F. (ed.) Godunov Methods, pp. 179–188. Springer, New York (2001)

    Chapter  Google Scholar 

  6. Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure. J. Comput. Phys. 317, 223–256 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD. J. Comput. Phys. 330, 624–632 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ducros, F., Laporte, F., Souleres, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161(1), 114–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  10. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. Technical Report NASA/TM-2013-217971, NASA, NASA Langley Research Center, Hampton (2013)

  11. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(2), 188–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227(3), 1676–1700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows. J. Comput. Phys. 229(2), 276–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ranocha, H.: SBP operators for CPR methods. Master’s thesis, TU Braunschweig (2016)

  20. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations (2017). arXiv:1701.02264 [math.NA]

  21. Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Roe, P.L.: Affordable, entropy-consistent Euler flux functions. In: Talk Presented at the Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications (2006). http://www2.cscamm.umd.edu/people/faculty/tadmor/references/files/Roe_Affordable_entropy_Hyp2006.pdf

  23. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  27. Winters, A.R., Derigs, D., Gassner, G.J., Walch, S.: A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations. J. Comput. Phys. 332, 274–289 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. A Math. 467(2134), 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ranocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranocha, H. Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations. J Sci Comput 76, 216–242 (2018). https://doi.org/10.1007/s10915-017-0618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0618-1

Keywords

Mathematics Subject Classification

Navigation