Skip to main content
Log in

Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative \(\mathbf {d}\), Hodge star \(\star \), and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform convergence studies of our numerical exterior derivative operator \(\overline{\mathbf {d}}\) and Hodge star operator \(\overline{\star }\) showing each converge spectrally to \(\mathbf {d}\) and \(\star \). We show how the numerical operators can be naturally composed to formulate general numerical approximations for solving differential equations on manifolds. We present results for the Laplace–Beltrami equations demonstrating our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gillette, A., Holst, M., Zhu, Y.: Finite element exterior calculus for evolution problems. J. Comput. Math. 35(2), 187–212 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Goes, F., Crane, K., Desbrun, M., Schroder, P.: Digital geometry processing with discrete exterior calculus. In: SIGGRAPH (2013)

  4. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, Caltech (2003)

  5. Arroyo, M., DeSimone, A.: Relaxation dynamics of fluid membranes. Phys. Rev. E 79(3), 031915 (2009)

    Article  MathSciNet  Google Scholar 

  6. Sigurdsson, J.K., Atzberger, P.J.: Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes. Soft Matter 12(32), 6685–6707 (2016)

    Article  Google Scholar 

  7. Stern, A., Tong, Y., Desbrun, M., Marsden, J.E.: Geometric computational electrodynamics with variational integrators and discrete differential forms. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, pp. 437–475. Springer, New York (2015)

    Google Scholar 

  8. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Goes, F., Desbrun, M., Meyer, M., DeRose, T.: Subdivision exterior calculus for geometry processing. ACM Trans. Graph. 35(4), 1–11 (2016)

    Article  Google Scholar 

  10. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. Technical report (2003)

  11. Wang, K., Tong, Y., Desbrun, M., Schroder, P.: Edge subdivision schemes and the construction of smooth vector fields. In: ACM SIGGRAPH 2006 Papers, pp. 1041–1048. ACM, Boston (2006)

  12. Kanso, E., Arroyo, M., Tong, Y., Yavari, A., Marsden, J.G., Desbrun, M.: On the geometric character of stress in continuum mechanics. Zeitschrift fr angewandte Mathematik und Physik 58(5), 843–856 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, Mineola (1994)

    MATH  Google Scholar 

  14. Eells, J.: Geometric aspects of currents and distributions. Proc. Natl. Acad. Sci. 41(7), 493–496 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    Book  MATH  Google Scholar 

  16. Rufat, D., Mason, G., Mullen, P., Desbrun, M.: The chain collocation method: a spectrally accurate calculus of forms. J. Comput. Phys. 257(Part B), 1352–1372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer, Berlin (2010)

    MATH  Google Scholar 

  18. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  19. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83(2), 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104(2), 272–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. J. Approx. Theory 103(1), 91–118 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Womersley, R.S., Sloan, I.H.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14(3), 195–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Regularized least squares approximations on the sphere using spherical designs. SIAM J. Numer. Anal. 50(3), 1513–1534 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lebedev, V.I., Laikov, D.N.: A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl. Math. 59, 477–481 (1999)

    Google Scholar 

  25. Lebedev, V.I.: Quadratures on a sphere. USSR Comput. Math. Math. Phys. 16(2), 10–24 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Driscoll, J.R., Healy, D.M.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Healy, D.M., Rockmore, D.N., Kostelec, P.J., Moore, S.: FFTs for the 2-sphere-improvements and variations. J. Fourier Anal. Appl. 9(4), 341–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schaeffer, N.: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14(3), 751–758 (2013)

    Article  Google Scholar 

  29. Abraham, R., Marsden, J.E., Raiu, T.S.: Manifolds, Tensor Analysis, and Applications, vol. 75. Springer, New York (1988)

    Book  Google Scholar 

  30. Pressley, A.: Elementary Differential Geometry. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  31. Spivak, M.: Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Westview Press, Boulder (1971)

    MATH  Google Scholar 

  32. Beentjes, C.H.L.: Quadrature on spherical surface. Technical report (2015)

  33. Womersley, R.S.: Efficient spherical designs with good geometric properties. arXiv:1709.01624 (2017)

  34. Hirani, A.N., Kalyanaraman, K., VanderZee, E.B.: Delaunay Hodge star. Comput. Aided Des. 45(2), 540–544 (2013). (Solid and Physical Modeling 2012)

    Article  MathSciNet  Google Scholar 

  35. Mohamed, M.S., Hirani, A.N., Samtaney, R.: Comparison of discrete Hodge star operators for surfaces. Comput. Aided Des. 78(C), 118–125 (2016)

    Article  Google Scholar 

  36. Meurer, A., Smith, C.P., Paprocki, M., Certik, O., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., Scopatz, A.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3, e103 (2017)

    Article  Google Scholar 

  37. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  38. Strang, G.: Linear Algebra and Its Applications. Academic Press Inc., Cambridge (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge support to P. J. Atzberger and B. Gross from research Grants DOE ASCR CM4 DE-SC0009254, NSF CAREER Grant DMS-0956210, and NSF Grant DMS-1616353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Atzberger.

Appendices

Appendix

Appendix A: Spherical Harmonics

The spherical harmonics are given by

$$\begin{aligned} Y^m_n(\theta , \phi ) = \sqrt{\frac{(2n+1)(n-m)!}{4\pi (n+m)!}}P^m_n\left( \cos (\phi )\right) \exp \left( {im\theta }\right) \end{aligned}$$
(19)

where m denotes the order and n the degree for \(n \ge 0\) and \(m \in \{-n, \dots , n\}\). The \(P^m_n\) denote the Associated Legendre Polynomials. In our notation, \(\theta \) denotes the azimuthal angle and \(\phi \) the polar angle of the spherical coordinates [17].

Since we work throughout only with real-valued functions, we have that the modes are self-conjugate and we use that \(Y^m_n = \overline{Y^{-m}_n}\). We have found it convenient to represent the spherical harmonics as

$$\begin{aligned} Y^m_n(\theta , \phi ) = X^m_n(\theta , \phi )+ iZ^m_n(\theta , \phi ) \end{aligned}$$
(20)

where \(X_n^m\) and \(Z_n^m\) denote the real and imaginary parts. In our numerical methods we use this splitting to construct a purely real set of basis functions on the unit sphere with maximum degree N. We remark that this consists of \((N+1)^2\) basis elements. In the case of \(N=2\) we have the basis elements

$$\begin{aligned}&\tilde{Y}_1 = Y^0_0, \tilde{Y}_2 = Z^1_1, \tilde{Y}_3 = Y^0_1, \tilde{Y}_4 = X^1_1, \tilde{Y}_5 = Z^2_2,\nonumber \\&\quad \tilde{Y}_6 = Z^1_2, \tilde{Y}_7 = Y^0_2, \tilde{Y}_8 = X^1_2, \tilde{Y}_9 = X^2_2. \end{aligned}$$
(21)

We use a similar convention for the basis for the other values of N. We take our final basis elements \(Y_i\) to be the normalized as \(Y_i = \tilde{Y}_i/\sqrt{\langle \tilde{Y}_i, \tilde{Y}_i \rangle }\).

We compute derivatives of our finite expansions by evaluating analytic formulas for the spherical harmonics in order to try to minimize approximation error [17]. Approximation errors are incurred when sampling the values of expressions involving these derivatives at the Lebedev nodes and performing quadratures. The derivative in the azimuthal coordinate \(\theta \) of the spherical harmonics is given by

$$\begin{aligned} \partial _\theta Y^m_n(\theta , \phi ) = \partial _\theta \sqrt{\frac{(2n+1)(n-m)!}{4\pi (n+m)!}}P^m_n(\cos (\phi )) \exp \left( {im\theta }\right) = imY^m_n\left( \theta , \phi \right) . \end{aligned}$$

This maps the spherical harmonic of degree n to again a spherical harmonic of degree n. In our numerics, this derivative can be represented in our finite basis which allows us to avoid projections. This allows for computing the derivative in \(\theta \) without incurring an approximation error. For the derivative in the polar angle \(\phi \) we have that

$$\begin{aligned} \partial _\phi Y^m_n(\theta , \phi ) = m \cot (\phi )Y^m_n(\theta , \phi )+\sqrt{(n-m)(n+m+1)}\exp \left( {-i\theta }\right) Y^{m+1}_n(\theta , \phi ). \end{aligned}$$
(22)

We remark that the expression can not be represented in terms of a finite expansion of spherical harmonics. We use this expression for \(\partial _\phi Y^m_n(\theta , \phi )\) when we compute values at the Lebedev quadrature nodes in Eq. (14). This provides a convenient way to compute derivatives of differential forms following the approach discussed in Sect. 3. We remark that it is the subsequent hyperinterpolation of the resulting expressions where the approximation error is incurred. We adopt the notational convention that \(Y^{m}_n = 0\) when \(m \ge n+1\). For further discussion of spherical harmonics see [17].

Appendix B: Differential Geometry of Radial Manifolds

We consider throughout manifolds of radial shape. A radial manifold is defined as a surface where each point can be connected by a line segment to the origin without intersecting the surface. In spherical coordinates, any point \(\mathbf {x}\) on the radial manifold can be expressed as

$$\begin{aligned} \mathbf {x}(\theta ,\phi ) = \varvec{\sigma }(\theta , \phi ) = r(\theta , \phi )\mathbf {r}(\theta ,\phi ) \end{aligned}$$
(23)

where \(\mathbf {r}\) is the unit vector from the origin to the point on the sphere corresponding to angle \(\theta ,\phi \) and r is a positive scalar function.

We take an isogeometric approach to representing the manifold M. We sample the scalar function r at the Lebedev nodes and represent the geometry using the finite spherical harmonics expansion \(r(\theta ,\phi ) = \sum _i \bar{r}_i Y_i\) up to the order \(\lfloor L/2 \rfloor \) where \(\bar{r}_i = \langle r, Y_i \rangle _Q\) for a quadrature of order L.

We consider two coordinate charts for our calculations. The first is referred to as Chart A and has coordinate singularities at the north and south pole. The second is referred to as Chart B and has coordinate singularities at the east and west pole. For each chart we use spherical coordinates with \((\theta , \phi ) \in [0 , 2\pi ) \times [0 , \pi ]\) but to avoid singularities only use values in the restricted range \(\phi \in [\phi _{min}, \phi _{max}]\), where \( 0 < \phi _{min} \le \frac{\pi }{4}\), and \(\frac{3\pi }{4} \le \phi _{max} < \pi \). In practice, one typically takes \(\phi _{min} = 0.8\times \frac{\pi }{4}\) and \(\phi _{max} = 0.8 \times \pi \). For Chart A, the manifold is parameterized in the embedding space \(\mathbb {R}^3\) as

$$\begin{aligned} \mathbf {x}(\hat{\theta }, \hat{\phi }) = r(\hat{\theta }, \hat{\phi })\mathbf {r}(\hat{\theta }, \hat{\phi }), \mathbf {r}(\hat{\theta }, \hat{\phi }) = \begin{bmatrix}\sin (\hat{\phi })\cos (\hat{\theta }),&\sin (\hat{\phi })\sin (\hat{\theta }),&\cos (\hat{\phi }) \end{bmatrix} \end{aligned}$$
(24)

and for Chart B

$$\begin{aligned} \mathbf {x}(\bar{\theta }, \bar{\phi }) = r(\bar{\theta }, \bar{\phi })\mathbf {r}(\bar{\theta }, \bar{\phi }), \bar{\mathbf {r}}(\bar{\theta }, \bar{\phi }) = \begin{bmatrix} \cos (\bar{\phi }),&\sin (\bar{\phi })\sin (\bar{\theta }),&-\sin (\bar{\phi })\cos (\bar{\theta }) \end{bmatrix}. \quad \end{aligned}$$
(25)

With these coordinate representations, we can derive explicit expressions for geometric quantities associated with the manifold such as the metric tensor and shape tensor. The derivatives used as the basis \(\partial _\theta , \partial _\phi \) for the tangent space can be expressed as

$$\begin{aligned} \varvec{\sigma }_{\theta }(\theta , \phi )= & {} r_{\theta }(\theta , \phi )\mathbf {r}(\theta , \phi ) + r(\theta , \phi ) \mathbf {r}_{\theta }(\theta , \phi )\end{aligned}$$
(26)
$$\begin{aligned} \varvec{\sigma }_{\phi }(\theta , \phi )= & {} r_{\phi }(\theta , \phi )\mathbf {r}(\theta , \phi ) + r(\theta , \phi ) \mathbf {r}_{\phi }(\theta , \phi ). \end{aligned}$$
(27)

We have expressions for \(\mathbf {r}_{\theta }\) and \(\mathbf {r}_{\phi }\) in the embedding space \(\mathbb {R}^3\) using Eq. (24) or (25) depending on the chart being used. The first fundamental form \(\mathbf {I}\) (metric tensor) and second fundamental form \(\mathbf {II}\) (shape tensor) are given by

$$\begin{aligned} \mathbf {I} = \begin{bmatrix} E&F \\ F&G \end{bmatrix} = \begin{bmatrix} \varvec{\sigma }_{\theta } \cdot \varvec{\sigma }_{\theta }&\varvec{\sigma }_{\theta } \cdot \varvec{\sigma }_{\phi } \\ \varvec{\sigma }_{\phi } \cdot \varvec{\sigma }_{\theta }&\varvec{\sigma }_{\phi } \cdot \varvec{\sigma }_{\phi } \end{bmatrix} = \begin{bmatrix} r_{\theta }^2+r^2\sin (\phi )^2&r_{\theta }r_{\phi } \\ r_{\theta }r_{\phi }&r_{\phi }^2+r^2 \end{bmatrix}. \end{aligned}$$
(28)

and

$$\begin{aligned} \mathbf {II} = \begin{bmatrix} L&M \\ N&N \end{bmatrix} = \begin{bmatrix} \varvec{\sigma }_{\theta \theta } \cdot \varvec{n}&\varvec{\sigma }_{\theta \phi } \cdot \varvec{n} \\ \varvec{\sigma }_{\phi \theta } \cdot \varvec{n}&\varvec{\sigma }_{\phi \phi }\cdot \varvec{n} \end{bmatrix}. \end{aligned}$$
(29)

The \(\mathbf {n}\) denotes the outward normal on the surface and is computed using

$$\begin{aligned} \varvec{n}(\theta , \phi ) = \frac{\varvec{\sigma }_{\theta }(\theta , \phi ) \times \varvec{\sigma }_{\phi }(\theta , \phi )}{\Vert \varvec{\sigma }_{\theta }(\theta , \phi ) \times \varvec{\sigma }_{\phi }(\theta , \phi ) \Vert }. \end{aligned}$$
(30)

The terms \(\varvec{\sigma }_{\theta \theta }\), \(\varvec{\sigma }_{\theta \phi }\), and \(\varvec{\sigma }_{\phi ,\phi }\) are obtained by further differentiation from Eqs. (26) to (27). We use the notation for the metric tensor \(\mathbf {g} = \mathbf {I}\) interchangeably. In practical calculations whenever we need to compute the action of the inverse metric tensor we do so through numerical linear algebra (Gaussian elimination with pivoting) [37, 38]. For notational convenience, we use the tensor notation for the metric tensor \(g_{ij}\) and its inverse \(g^{ij}\) which has the formal correspondence

$$\begin{aligned} g_{ij} = \left[ \mathbf {I}\right] _{i,j}, g^{ij} = \left[ \mathbf {I}^{-1}\right] _{i,j}. \end{aligned}$$
(31)

For the metric factor we also have that

$$\begin{aligned} \sqrt{|g|} = \sqrt{\det (\mathbf {I})} = r\sqrt{r_{\theta }^2+(r_{\phi }^2+r^2)\sin (\phi )^2} = \Vert \mathbf {\sigma }_{\theta }(\theta , \phi ) \times \mathbf {\sigma }_{\phi }(\theta , \phi ) \Vert . \end{aligned}$$
(32)

To ensure accurate numerical calculations in each of the above expressions the appropriate coordinates either Chart A or Chart B are used to ensure sufficient distance from coordinate singularities at the poles. To compute quantities associated with curvature of the manifold we use the Weingarten map [30] which can be expressed as

$$\begin{aligned} \mathbf {W} = -\mathbf {I}^{-1} \mathbf {II}. \end{aligned}$$
(33)

To compute the Gaussian curvature K, we use

$$\begin{aligned} K(\theta ,\phi ) = \det \left( \mathbf {W}(\theta ,\phi )\right) . \end{aligned}$$
(34)

For further discussion of the differential geometry of manifolds see [29,30,31].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, B., Atzberger, P.J. Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds. J Sci Comput 76, 145–165 (2018). https://doi.org/10.1007/s10915-017-0617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0617-2

Keywords

Navigation