Skip to main content
Log in

\(L_2\) Stability of Explicit Runge–Kutta Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Explicit Runge–Kutta methods are standard tools in the numerical solution of ordinary differential equations (ODEs). Applying the method of lines to partial differential equations, spatial semidiscretisations result in large systems of ODEs that are solved subsequently. However, stability investigations of high-order methods for transport equations are often conducted only in the semidiscrete setting. Here, strong-stability of semidiscretisations for linear transport equations, resulting in ODEs with semibounded operators, are investigated. For the first time, it is proved that the fourth-order, ten-stage SSP method of Ketcheson (SIAM J Sci Comput 30(4):2113–2136, 2008) is strongly stable for general semibounded operators. Additionally, insights into fourth-order methods with fewer stages are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  3. Conway, J.B.: A Course in Functional Analysis. Springer Science New York Inc, New York (1997)

    Google Scholar 

  4. Cooper, G.: Stability of Runge–Kutta methods for trajectory problems. IMA J. Numer. Anal. 7(1), 1–13 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  6. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  7. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, New York (2006)

    MATH  Google Scholar 

  9. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  10. Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24(1), 97–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York (2009)

    Book  MATH  Google Scholar 

  14. Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4), A2076–A2099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kopriva, D.A., Jimenez, E.: An assessment of the efficiency of nodal discontinuous Galerkin spectral element methods. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 223–235. Springer, Berlin (2013)

    Chapter  Google Scholar 

  16. Levy, D., Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40(1), 40–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rackauckas, C., Nie, Q.: Differentialequations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1), 15 (2017)

  18. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Riesz, F., Nagy, B.S.: Functional Analysis. Dover Publications, New York (1990)

    MATH  Google Scholar 

  20. Roman, S.: Advanced Linear Algebra. Springer Science & Business Media, LLC, New York (2008)

    Book  MATH  Google Scholar 

  21. Sun, Z., Shu, C.W.: Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations (2016), https://www.brown.edu/research/projects/scientific-computing/sites/brown.edu.research.projects.scientific-computing/files/uploads/Stability%20of%20the%20fourth%20order%20Runge-Kutta%20method%20for%20time-dependent%20partial.pdf, to appear in Annals of Mathematical Sciences and Applications

  22. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method II. In: Estep, D.J., Tavener, S. (eds.) Collected Lectures on the Preservation of Stability Under Discretization, vol. 109, pp. 25–49. SIAM, Philadelphia (2002)

    Google Scholar 

  24. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vincent, P.E., Farrington, A.M., Witherden, F.D., Jameson, A.: An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ranocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranocha, H., Öffner, P. \(L_2\) Stability of Explicit Runge–Kutta Schemes. J Sci Comput 75, 1040–1056 (2018). https://doi.org/10.1007/s10915-017-0595-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0595-4

Keywords

Mathematics Subject Classication

Navigation