Skip to main content
Log in

A Multi-Level Mixed Element Method for the Eigenvalue Problem of Biharmonic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we discuss approximating the eigenvalue problem of biharmonic equation. We first present an equivalent mixed formulation which admits natural nested discretization. Then, we present multi-level finite element schemes by implementing the algorithm as in Lin and Xie (Math Comput 84:71–88, 2015) to the nested discretizations on a series of nested grids. The multi-level mixed scheme for the biharmonic eigenvalue problem possesses optimal convergence rate and optimal computational cost. Both theoretical analysis and numerical verifications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. In this paper, \(\lesssim \), \(\gtrsim \), and denote \(\leqslant \), \(\geqslant \), and \(=\) up to a constant respectively. The hidden constants depend on the domain, and, when triangulation is involved, they also depend on the shape-regularity of the triangulation, but they do not depend on h or any other mesh parameter.

References

  1. Andreev, A., Lazarov, R., Racheva, M.: Postprocessing and higher order convergence of mixed finite element approximations of biharmonic eigenvalue problem. J. Comput. Appl. Math. 182, 333–349 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods Handbook of Numerical Analysis (Part 2). Elsevier, Amsterdam (1991)

    Google Scholar 

  3. Bernardi, D., Girault, V., Maday, Y.: Mixed spectral element approximation of the Navier–Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12, 565–608 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bi, H., Yang, Y.: A two-grid method of the non-conforming Crouzeix–Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217, 9669–9678 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  6. Bogner, F., Fox, F., Schmidt, L.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formula. AIAA J. 7, 1957–1965 (1965)

    Google Scholar 

  7. Brenner, S., Monk, P., Sun, J.: \(C^0\) Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems, pp. 3–15. Springer, Cham (2015)

    MATH  Google Scholar 

  8. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126, 33–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, K., Lin, Y.: Lecture Notes of Functional Analysis. Peking University Press, Beijing (1990)

    Google Scholar 

  10. Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet–Raviart scheme. Adv. Comput. Math. 27, 95–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chien, C., Jeng, B.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27, 287–1304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)

    Chapter  Google Scholar 

  13. Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46, 295–324 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falk, R.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, C., Zhang, S.: Optimal solver for Morley element discretization of biharmonic equation on shape-regular grids. J. Comput. Math. 34, 159–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gallistl, D.: Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, 1779–1811 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equation, Springer Series in Computational Mathematics. Springer, Berlin (1986)

    Book  Google Scholar 

  18. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechn. Scand. Civ. Eng. Buil. Constr. Ser. 46, 1–29 (1967)

    MATH  Google Scholar 

  19. Hermann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 13–26 (1967)

    Google Scholar 

  20. Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61, 196–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, J., Huang, Y., Shen, Q.: Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods. Numer. Math. 131, 273–302 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14, 399–414 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60, 276–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Methods Partial Differ. Equ. 24, 435–448 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43–62 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolman, K.: A two-level method for nonsymmetric eigenvalue problems. Acta Math. Appl. Sin. 21, 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krendl, W., Rafetseder, K., Zulehner, W.: A two-level method for nonsymmetric eigenvalue problems. Electron. T. Numer. Anal. 45, 257–282 (2016)

    MATH  Google Scholar 

  28. Li, Q., Yang, Y.: A two-grid discretization scheme for the Steklov eigenvalue problem. J. Appl. Math. Comput. 36, 129–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Zhang, S.: A stable mixed element method for biharmonic equation with firstorder function spaces. Comput. Methods Appl. Math. 17, 601–616 (2017)

    MathSciNet  Google Scholar 

  30. Lin, Q.: Some problems about the approximate solution for operator equations. Acta Math. Sin. 22, 219–230 (1979)

    MATH  Google Scholar 

  31. Lin, Q., Luo, F., Xie, H.: A multilevel correction method for Stokes eigenvalue problems and its applications. Math. Methods Appl. Sci. 38, 4540–4552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, Q., Xie, H.: An observation on Aubin–Nitsche lemma and its applications. Math. Pract. Theory 41, 247–258 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Lin, Q., Xie, H.: The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods. Math. Pract. Theory 42, 219–226 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84, 71–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation. Appl. Math. 60, 527–0550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mora, D., Rodriguez, R.: A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78, 1891–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xie, H.: A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods. BIT Numer. Math. 55, 1243–1266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xie, H., Zhang, Z.: A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods. arXiv:1505.06288 (2015)

  40. Xu, J.: Iterative methods by space decomposition and subspace corrections. SIAM Rev. 34, 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, Y., Jiang, W., Zhang, Y., Wang, W., Bi, H.: A two-scale discretization scheme for mixed variational formulation of eigenvalue problems. Abstr. Appl. Anal. 2012, 812914 (2012). https://doi.org/10.1155/2012/812914

  45. Yang, Y., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36, 443–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou, A.: Multi-level adaptive corrections in finite dimensional approximations. J. Comput. Math. 28, 45–54 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Zhang is partially supported by the National Natural Science Foundation of China with Grant No. 11471026 and National Centre for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences. X. Ji is partially supported by the National Natural Science Foundation of China with Grant Nos. 11271018 and 91630313, and National Centre for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences. The authors would like to thank Prof. Hehu Xie for his valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xi, Y. & Ji, X. A Multi-Level Mixed Element Method for the Eigenvalue Problem of Biharmonic Equation. J Sci Comput 75, 1415–1444 (2018). https://doi.org/10.1007/s10915-017-0592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0592-7

Keywords

Mathematics Subject Classification

Navigation