Skip to main content
Log in

Numerical Method for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Equation with the Temperature-Jump Boundary Condition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article proposes a new nanoscale heat transfer model based on the Caputo type fractional dual-phase-lagging (DPL) heat conduction equation with the temperature-jump boundary condition. The model is proved to be well-posed. A finite difference scheme based on the L1 approximation for the Caputo derivative is then presented for solving the fractional DPL model. Unconditional stability and convergence of the scheme are proved by using the discrete energy method. Three numerical examples are given to verify the accuracy of the scheme. Results show the convergence order to be \(O(\tau ^{2-\alpha }+h^2)\) , which coincides with the theoretical analysis. A simple nanoscale semiconductor silicon device is illustrated to show the applicability of the model. It is seen from the numerical result that when \(\alpha =1\), the fractional DPL reduces to the conventional DPL and the obtained peak temperature is almost identical to those obtained in the literature. However, when \(\alpha <1\), the model predicts a higher peak temperature level than that when \(\alpha =1\). In particular, when \(\alpha = 0.7\) and 0.9, an oscillatory temperature at the beginning is observed. This indicates that the fractional DPL model can be an excellent candidate for analyzing the temperature instability appearing in electronic nano-semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mao, Y., Xu, M.: Lattice Boltzmann numerical analysis of heat transfer in nano-scale silicon films induced by ultra-fast laser heating. Int. J. Therm. Sci. 89, 210–221 (2015)

    Article  Google Scholar 

  2. Ghazanfarian, J., Shomali, Z.: Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor. Int. J. Heat Mass Transf. 55, 6231–6237 (2012)

    Article  Google Scholar 

  3. Shomali, Z., Abbassi, A.: Investigation of highly non-linear dual-phase-lag model in nanoscale solid argon with temperature-dependent properties. Int. J. Therm. Sci. 83, 56–67 (2014)

    Article  Google Scholar 

  4. Nasri, F., Ben Aissa, M.F., Belmabrouk, H.: Effect of second-order temperature jump in metal-oxide-semiconductor field effect transistor with dual-phase-lag model. Microelectron. J. 46, 67–74 (2015)

    Article  Google Scholar 

  5. Ho, C.S., Liou, J.J., Chen, F.: An analytical MOSFET breakdown model including self-heat effect. Solid State Electron. 44, 125–131 (2000)

    Article  Google Scholar 

  6. Liao, M., Gan, Z.: New insight on negative bias temperature instability degradation with drain bias of 28 nm high-K metal gate p-MOSFET devices. Microelectron. Reliab. 54, 2378–2382 (2014)

    Article  Google Scholar 

  7. Kim, P., Shi, L., Majumdar, A., McEuen, P.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Article  Google Scholar 

  8. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  Google Scholar 

  9. Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)

    Article  MATH  Google Scholar 

  10. Allu, P., Mazumder, S.: Hybrid ballistic-diffusive solution to the frequency-dependent phonon Boltzmann transport equation. Int. J. Heat Mass Transf. 100, 165–177 (2016)

    Article  Google Scholar 

  11. Li, X.: On the stability of the boundary conditions for molecular dynamics. J. Comput. Appl. Math. 231, 493–505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X.: Coarse-graining molecular dynamics models using an extended Galerkin projection. Int. J. Numer. Methods Eng. 99, 157–182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

    Article  Google Scholar 

  14. Saghatchi, R., Ghazanfarian, J.: A novel SPH method for the solution of dual-phase-lag model with temperature-jump boundary condition in nanoscale. Appl. Math. Model. 39, 1063–1073 (2015)

    Article  MathSciNet  Google Scholar 

  15. Tien, C.L., Majumdar, A., Gerner, F.M.: Microscale Energy Transport. Taylor and Francis, Abingdon (1998)

    Google Scholar 

  16. Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw Hill, New York (2007)

    Google Scholar 

  17. Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123, 749–759 (2001)

    Article  Google Scholar 

  18. Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscale. Phys. Rev. B 72, 1–11 (2005)

    Article  Google Scholar 

  19. Jeng, M.S., Yang, R., Song, D., Chen, G.: Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J. Heat Transf. 130, 042410 (2008)

    Article  Google Scholar 

  20. Mittal, A., Mazumder, S.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Heat Transf. 132, 064305 (2010)

    Article  Google Scholar 

  21. Peraud, J.P.M., Hadjiconstantinou, N.G.: Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys. Rev. B 84, 205331 (2011)

    Article  Google Scholar 

  22. Escobar, R.A., Ghai, S.S., Jhon, M.S., Amon, C.H.: Multi-length and time scale thermal transport using the lattice Boltzmann method with applications to electronics cooling. Int. J. Heat Mass Transf. 49, 97–107 (2006)

    Article  MATH  Google Scholar 

  23. Nabovati, A., Sellan, D.P., Amon, C.A.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, G.: Ballistic-diffusive heat conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)

    Article  Google Scholar 

  25. Chen, G.: Ballistic-diffusive equations for transient heat conduction from nano to microscales. J. Heat Transf. 124, 320–328 (2002)

    Article  Google Scholar 

  26. Chen, G., Zeng, T.F.: Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)

    Article  Google Scholar 

  27. Jiang, F., Sousa, A.C.M.: SPH numerical modeling for ballistic-diffusive heat conduction. Numer. Heat Transf. 50, 499–515 (2006)

    Article  Google Scholar 

  28. Yang, R., Chen, G., Laroche, M., Taur, Y.: Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. J. Heat Transf. 127, 298–306 (2005)

    Article  Google Scholar 

  29. Fixel, D.A., Hitchon, W.N.G.: Convective scheme solution of the Boltzmann transport equation for nanoscale semiconductor devices. J. Comput. Phys. 227, 1387–1410 (2007)

    Article  MATH  Google Scholar 

  30. Murhty, J.Y., Mathur, S.R.: Computation of sub-micron thermal transport using an unstructures finite volume method. J. Heat Transf. 124, 1176–1181 (2002)

    Article  Google Scholar 

  31. Narumanchi, S.V.J., Murthy, J.Y., Amon, C.H.: Sub-micron heat transport model in silicon accounting for phonon dispersion and polarization. J. Heat Transf. 126, 946–955 (2004)

    Article  Google Scholar 

  32. Murthy, J.Y., Narumanchi, S.V.J., Pascual-Gutierrez, J.A., Wang, T., Ni, C., Mathur, S.R.: Review of multi-scale simulation in sub-micron heat transport. Int. J. Multiscale Comput. Eng. 3, 5–32 (2005)

    Article  Google Scholar 

  33. Mittal, A., Mazumder, S.: Generalized ballistic-diffusive formulation and hybrid SN–PN solution of the Boltzmann transport equation for phonons for non-equilibrium heat conduction. J. Heat Transf. 133, 092402 (2011)

    Article  Google Scholar 

  34. Mittal, A., Mazumder, S.: Hybrid discrete ordinates-spherical harmonics solution to the Boltzmann transport equation for phonons for non-equilibrium heat conduction. J. Comput. Phys. 230, 6977–7001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Loy, J.M., Murthy, J.Y., Singh, S.: A fast hybrid Fourier–Boltzmann transport equation solver for nongray phonon transport. J. Heat Transf. 135, 011008 (2013)

    Article  Google Scholar 

  36. Wang, M., Yang, N., Guo, Z.Y.: Non-fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)

    Article  Google Scholar 

  37. Li, W.X., Liu, T.Y., Liu, C.L.: Acoustic phonon thermal transport through a nanostructure. Chin. Phys. Lett. 23, 2522–2525 (2006)

    Article  Google Scholar 

  38. Liang, L.H., Li, B.W.: Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B. 73, 153303 (2006)

    Article  Google Scholar 

  39. Ni, X., Zhang, G., Li, B.: Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J. Phys. Condens. Matter. 23, 215301 (2011)

    Article  Google Scholar 

  40. Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)

    Article  Google Scholar 

  41. Alvarez, F.X., Jou, D.: Size and frequency dependence of effective thermal conductivity in nanosystems. J. Appl. Phys. 103, 094321 (2008)

    Article  Google Scholar 

  42. Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009)

    Article  Google Scholar 

  43. Guo, Z.Y.: Motion and transfer of thermal mass—thermal mass and thermal gas. J. Eng. Thermophys. 27, 631–634 (2006)

    Google Scholar 

  44. Cao, B.Y., Guo, Z.Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007)

    Article  Google Scholar 

  45. Guo, Z.Y.: New physical quantities in heat. J. Eng. Thermophys. 1, 112–114 (2008)

    Google Scholar 

  46. Wang, M., Guo, Z.Y.: Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys. Lett. A 374, 4312–4315 (2010)

    Article  MATH  Google Scholar 

  47. Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Heat Therm. Sci. 49, 1133–1137 (2010)

    Article  Google Scholar 

  48. Tzou, D.Y.: A unified field approach for heat conduction from micro- and macro-scales. J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  49. Tzou, D.Y.: The generalized lagging response in small-scale and high heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)

    Article  Google Scholar 

  50. Tzou, D.Y.: Experimental support for the lagging response in heat propagation. AIAA J. Thermophys. Heat Transf. 9, 686–693 (1995)

    Article  Google Scholar 

  51. Tzou, D.Y.: Macro to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. Wiley, New York (2015)

    Google Scholar 

  52. Ghazanfarian, J., Abbassi, A.: Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction. Int. J. Heat Mass Transf. 52, 3706–3711 (2009)

    Article  MATH  Google Scholar 

  53. Basirat, H., Ghazanfarian, J., Forooghi, P.: Implementation of dual-phase-lagging model at different Knudsen numbers within slab heat transfer. In: Proceedings of the International Conference on Modeling and Simulation, Konia, Turkey, pp. 895–899 (2006)

  54. Ghazanfarian, J., Abbassi, A.: Investigation of 2D transient heat transfer under the effect of dual-phase-lagging model in a nanoscale geometry. Int. J. Thermophys. 33, 552–566 (2012)

    Article  Google Scholar 

  55. Dai, W., Han, F., Sun, Z.Z.: Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Int. J. Heat Mass Transf. 64, 966–975 (2013)

    Article  Google Scholar 

  56. Sun, H., Du, R., Dai, W., Sun, Z.Z.: A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Numer. Methods Partial Differ. Equ. 31, 1742–1768 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sun, H., Sun, Z.Z., Dai, W.: A second-order finite difference scheme for solving the dual-phase-lagging equation in a double-layered nanoscale thin film. Numer. Methods Partial Differ. Equ. 33, 142–173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Awad, E.: On the generalized thermal lagging behavior. J. Therm. Stress. 35, 193–325 (2012)

    Article  Google Scholar 

  59. Sherief, H.H., EI-Sayed, A.M.A., EI-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solid Struct. 47, 269–275 (2010)

    Article  MATH  Google Scholar 

  60. Mishra, T.N., Rai, K.N.: Numerical solution of FSPL heat conduction equation for analysis of thermal ptopagtion. Appl. Math. Comput. 273, 1006–1017 (2016)

    MathSciNet  Google Scholar 

  61. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  62. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  63. Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46, 660–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  65. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Liao, H.L., Sun, Z.Z.: Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235, 2217–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Sun, Z.Z.: Numerical Methods for Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  68. Alikhanov, A.A.: Stability and convergence of difference schemes approximating a two-parameter nonlocal boundary value problem for time-fractional diffusion equation. Comput. Math. Model. 26, 252–272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the editor and the anonymous reviewers for their many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

The research is supported by National Natural Science Foundation of China (No. 11671081) and by the Fundamental Research Funds for the Central Universities and the Research and Innovation Project for College Graduates of Jiangsu Province (Grant No. KYLX\(15_{-}0106\)) and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ1716) and by the China Scholarship Council (Grant No. 201706090099).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Cc., Dai, W. & Sun, Zz. Numerical Method for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Equation with the Temperature-Jump Boundary Condition. J Sci Comput 75, 1307–1336 (2018). https://doi.org/10.1007/s10915-017-0588-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0588-3

Keywords

Navigation