Skip to main content
Log in

An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze an efficient spectral-Galerkin approximation for the Maxwell transmission eigenvalue problem in spherical geometry. Using a vector spherical harmonic expansion, we reduce the problem to a sequence of equivalent one-dimensional TE and TM modes that can be solved individually in parallel. For the TE mode, we derive associated generalized eigenvalue problems and corresponding pole conditions. Then we introduce weighted Sobolev spaces based on the pole condition and prove error estimates for the generalized eigenvalue problem. The TM mode is a coupled system with four unknown functions, which is challenging for numerical calculation. To handle it, we design an effective algorithm using Legendre-type vector basis functions. Finally, we provide some numerical experiments to validate our theoretical results and demonstrate the efficiency of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  2. Cakoni, F., Colton, D., Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  3. SUN, J., XU, L.: Computation of Maxwells transmission eigenvalues and its applications in inverse medium problems. Inverse Probl. 29(10), 104013 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cakoni, F., Colton, D., Monk, P.: On the use of transmission eigenvalues to estimate the index of refraction from far field data. Inverse Probl. 23(2), 507–522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26, 074004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. An, J., Shen, J.: Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction. J. Math. Study 1(1), 1–20 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Haddar, H.: The interior transmission problem for anisotropic maxwells equations and its applications to the inverse problem. Math. Method Appl. Sci. 27(18), 2111–2129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27, 015009 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. CAKONI, F., COLTON, D.: On the determination of dirichlet or transmission eigenvalues from far field data. Comptes Rendus Mathematique 348(7–8), 379C383 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247–B264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, T.M., Huang, W.Q., Lin, W.W.: A robust numerical algorithm for computing Maxwell’s transmission eigenvalue problems. SIAM J. Sci. Comput. 37(5), A2403–A2423 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, L., Shen, J., Wang, L.L.: Spectral approximation of time-harmonic Maxwell equations in three-dimensional exterior domains. Int. J. Numer. Anal. Mod. 12(2), 1–18 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Hill, E.L.: The theory of vector spherical harmonics. Am. J. Phys. 22, 211–214 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hagstrom, T., Lau, S.: Radiation boundary conditions for Maxwells equations: A review of accurate time-domain formulations. J. Comput. Math. 25(3), 305–336 (2007)

    MathSciNet  Google Scholar 

  16. Barrera, R.G., Estevez, G.A., Giraldo, J.: Vector spherical harmonics and their application to magnetostatics. Eur. J. Phys. 6, 287 (1985)

    Article  Google Scholar 

  17. SHEN, J., TANG, T., WANG, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  18. Min, M.S., Gottlieb, D.: On the convergence of the Fourier approximation for eigenvalues and eigenfunctions of discontinuous problems. SIAM J. Numer. Anal. 40(6), 2254–2269 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J., Tang, T.: Spectral and High-order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  20. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golub, G.H., van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  22. Kwan, Y., Shen, J.: An efficient direct parallel elliptic solver by the spectral element method. J. Comput. Phys. 225, 1721–1735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing An.

Additional information

This work was supported in part by the National Natural Science Foundation of China (Nos. 11661022, 11471031, 91430216), NASF U1530401, and the US National Science Foundation Grant DMS-1419040.

Appendices

Appendix A: Proof of Theorem 4

Let \(u_*(t)=\frac{1}{4}(t+1)(1-t)^2\partial _tu(-1)\) for \(\forall u\in H_{0,\omega ,l}^2(I)\). By construction, we have \(\partial _t^k(u-u_*)(\pm 1)=0,(k=0,1).\) If \(u\in H_{\omega ^{-2,-2},l}^s(I)\) , then we have \(u-u_*\in H_{\omega ^{-2,-2},*}^s(I)\). In fact, from Hardy inequality (cf. B 8.8 in [17]) we have

$$\begin{aligned}&\int _I\omega ^{-2,-2}(u-u_*)^2dt\lesssim \int _I \left( \partial _t(u-u_*)\right) ^2dt,\\&\int _I\omega ^{-2,-2} \left( \partial _t(u-u_*)\right) ^2dt \lesssim \int _I\left( \partial _t^2(u-u_*)\right) ^2dt. \end{aligned}$$

Thus, we can derive that

$$\begin{aligned} \int _I\omega ^{-2,-2}(u-u_*)^2dt \lesssim \int _I\omega ^{-1,-1} \left( \partial _t(u-u_*)\right) ^2dt\lesssim \int _I \left( \partial _t^2(u-u_*)\right) ^2dt, \end{aligned}$$

Since

$$\begin{aligned} \int _I\left( \partial _t^2u_*\right) ^2dt&= \int _I\left( \left( \frac{3}{2}t-\frac{1}{2}\right) \partial _tu(-1)\right) ^2dt\\&=2\left( \partial _tu(-1)\right) ^2 =2\left( \int _I\partial _t^2udt\right) ^2\le 4\int _I\left( \partial ^2_tu\right) ^2dt, \end{aligned}$$

then we have

$$\begin{aligned} \int _I\left( \partial _t^2(u-u_*)\right) ^2dt \lesssim \int _I\left( \partial _t^2u\right) ^2dt+\int _I \left( \partial _t^2u_*\right) ^2dt \lesssim \int _I\left( \partial _t^2u\right) ^2dt. \end{aligned}$$
(A.1)

Similarly, we can derive that \(\int _I\omega ^{1,1}(\partial _t^3u_*)^2dt=3(\partial _tu(-1))^2\lesssim \int _I(\partial ^2_tu)^2dt.\) Thus we have

$$\begin{aligned} \int _I\omega ^{1,1} \left( \partial _t^3(u-u_*)\right) ^2dt&\lesssim \int _I\omega ^{1,1} \left( \partial _t^3u\right) ^2dt+\int _I\omega ^{1,1} \left( \partial _t^3u_*\right) ^2dt \nonumber \\&\lesssim \int _I\omega ^{1,1} \left( \partial _t^3u\right) ^2dt +\int _I\left( \partial ^2_tu\right) ^2dt. \end{aligned}$$
(A.2)

For \(k>3\), we have

$$\begin{aligned} \int _I\omega ^{-2+k,-2+k} \left( \partial _t^k(u-u_*)\right) ^2dt =\int _I\omega ^{-2+k,-2+k}\left( \partial _t^ku\right) ^2dt. \end{aligned}$$
(A.3)

Thus, \(u-u_*\in H_{\omega ^{-2,-2},*}^s(I)\) and we can define

$$\begin{aligned} \pi _N^{2,l}u=\pi _{N,\omega ^{-2,-2}}(u-u_*)+u_* \in P_N^{0,l}, \forall u\in H_{\omega ^{-2,-2},l}^s(I) \end{aligned}$$

Then by Lemma 4.5 we can obtain

$$\begin{aligned} \Vert \partial _t^2\left( \pi _N^{2,l}u-u\right) \Vert =\Vert \partial _t^2\pi _{N,\omega ^{-2,-2}}(u-u_*)-(u-u_*)\Vert \lesssim N^{2-s}\Vert \partial _t^s(u-u_*)\Vert _{\omega ^{-2+s,-2+s}}. \end{aligned}$$

Together with (A.1), (A.2) and (A.3) we can get desired results. \(\square \)

Appendix B: Proof of Theorem 5

For any \(v\in E_{1,m}\) it can be represented by \(v=\sum _{i=1}^m\mu _iu_l^i\), we then have

$$\begin{aligned}&\frac{B(v,v)-B\left( \Pi _{N}^{2,l}v,\Pi _{N}^{2,l}v\right) }{B(v,v)}\le \frac{2|B\left( v,v-\Pi _{N}^{2,l}v\right) |}{B(v,v)}\\&\quad \le \frac{2\sum _{i,j=1}^{m}|\mu _i| |\mu _j||B\left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^j\right) |}{\sum _{i=1}^{m}|\mu _i|^2}\\&\quad \le 2m\max _{i,j=1,\ldots ,m}|B\left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^j\right) |. \end{aligned}$$

From Cauchy–Schwarz inequality we have

$$\begin{aligned}&\left| B\left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^j\right) \right| =\frac{1}{\lambda ^j(\tau _l)}\left| \lambda ^j (\tau _l)B\left( u_l^j,u_l^i-\Pi _{N}^{2,l}u_l^i\right) \right| \\&\quad =\frac{1}{\lambda ^j(\tau _l)}\left| A_{\tau _l} \left( u_l^j,u_l^i-\Pi _{N}^{2,l}u_l^i\right) \right| =\frac{1}{\lambda ^j(\tau _l)}\left| A_{\tau _l} \left( u_l^j-\Pi _{N}^{2,l}u_l^j,u_l^i-\Pi _{N}^{2,l}u_l^i\right) \right| \\&\quad \le \frac{1}{\lambda ^j(\tau _l)} \left( A_{\tau _l}\left( u_l^j-\Pi _{N}^{2,l}u_l^j,u_l^j -\Pi _{N}^{2,l}u_l^j\right) \right) ^{\frac{1}{2}} \left( A_{\tau _l}\left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^i-\Pi _{N}^{2,l}u_l^i\right) \right) ^{\frac{1}{2}}.\\ \end{aligned}$$

From Hardy inequality (cf. B 8.6 in [17]) we have

$$\begin{aligned} \int _I\frac{1}{(t+1)^2}u^2dt\lesssim \int _I\left( \partial _tu\right) ^2dt. \end{aligned}$$

Then from \(\hbox {Poincar}\acute{e}\) inequality we can obtain

$$\begin{aligned} \Vert u\Vert _{2,\omega ,l}^2&=\int _I(t+1)^2 \left( \partial _t^2u\right) ^2dt+\int _I\left( \partial _tu\right) ^2dt +\int _I\frac{1}{(t+1)^2}u^2dt \\&\lesssim \int _I\left( \partial _t^2u\right) ^2dt +\int _I\left( \partial _tu\right) ^2dt\lesssim \int _I \left( \partial _t^2u\right) ^2dt. \end{aligned}$$

From the property of orthogonal project (4.34) and continuity of \(A_{\tau _l}(u,v)\) in Theorem 1 we can derive that

$$\begin{aligned}&\left| B\left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^j\right) \right| =\frac{1}{\lambda ^j(\tau _l)}\left| A_{\tau _l}\left( u_l^j,u_l^i-\Pi _{N}^{2,l}u_l^i\right) \right| \\&\le \frac{1}{\lambda ^j(\tau _l)} \left( A_{\tau _l}\left( u_l^j-\Pi _{N}^{2,l}u_l^j,u_l^j -\Pi _{N}^{2,l}u_l^j\right) \right) ^{\frac{1}{2}}\left( A_{\tau _l} \left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^i-\Pi _{N}^{2,l}u_l^i\right) \right) ^{\frac{1}{2}}\\&\le \frac{1}{\lambda ^j(\tau _l)} \left( A_{\tau _l}\left( u_l^j-\pi _{N}^{2,l}u_l^j,u_l^j-\pi _{N}^{2,l}u_l^j\right) \right) ^{\frac{1}{2}}\left( A_{\tau _l}\left( u_l^i-\pi _{N}^{2,l}u_l^i,u_l^i -\pi _{N}^{2,l}u_l^i\right) \right) ^{\frac{1}{2}}\\&\lesssim \frac{1}{\lambda ^j(\tau _l)}\Vert u_l^j-\pi _{N}^{2,l} u_l^j\Vert _{2,\omega ,l}\Vert u_l^i-\pi _{N}^{2,l}u_l^i\Vert _{2,\omega ,l}\\&\lesssim \frac{1}{\lambda ^j(\tau _l)} \Vert \partial _t^2\left( u_l^j-\pi _{N}^{2,l}u_l^j\right) \Vert \cdot \Vert \partial _t^2\left( u_l^i-\pi _{N}^{2,l}u_l^i\right) \Vert . \end{aligned}$$

Since

$$\begin{aligned} \frac{B(v,v)}{B\left( \Pi _{N}^{2,l}v,\Pi _{N}^{2,l}v\right) } \le \frac{1}{1-2m\max _{i,j=1,\ldots ,m}\left| B\left( u_l^i-\Pi _{N}^{2,l}u_l^i,u_l^j\right) \right| }, \end{aligned}$$

then from Theorems 3 and 4 we can get desired results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Zhang, Z. An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries. J Sci Comput 75, 157–181 (2018). https://doi.org/10.1007/s10915-017-0528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0528-2

Keywords

Navigation