Skip to main content
Log in

High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

When integrating unsteady problems using globally continuous representation of the solution, as for continuous finite element methods, one faces the problem of inverting a mass matrix. In some cases, one has to recompute this mass matrix at each time steps. In some other methods that are not directly formulated by standard variational principles, it is not clear how to write an invertible mass matrix. Hence, in this paper, we show how to avoid this problem for hyperbolic systems, and we also detail the conditions under which this is possible. Analysis and simulation support our conclusions, namely that it is possible to avoid inverting mass matrices without sacrificing the accuracy of the scheme. This paper is an extension of Abgrall et al. (in: Karasözen B, Manguoglu M, Tezer-Sezgin M, Goktepe S, Ugur O (eds) Numerical mathematics and advanced applications ENUMATH 2015. Lecture notes in computational sciences and engineering, vol 112, Springer, Berlin, 2016) and Ricchiuto and Abgrall (J Comput Phys 229(16):5653–5691, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In this paper we also show that some of the finite element methods for approximating (1) can beneficiate of the techniques developped here.

References

  1. Abgrall, R.: Essentially non oscillatory residual distribution schemes for hyperbolic problems. J. Comput. Phys. 214(2), 773–808 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abgrall, R.: On a class of high order schemes for hyperbolic problems. In: Proceedings of the International Conference of Mathematicians, vol. II, Seoul (2014)

  4. Abgrall, R., Bacigaluppi, P., Tokareva, S.: How to avoid mass matrix for linear hyperbolic problems. In: Karasözen, B., Manguoglu, M., Tezer-Sezgin, M., Goktepe, S., Ugur, O. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Sciences and Engineering, vol. 112. Springer, Berlin (2016)

    Google Scholar 

  5. Abgrall, R., de Santis, D.: Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier–Stokes equations. J. Comput. Phys. 283, 329–359 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Abgrall, R., Larat, A., Ricchiuto, M.: Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. J. Comput. Phys. http://hal.inria.fr/inria-00464799/en (2011)

  7. Abgrall, R., Trefilick, J.: An example of high order residual distribution scheme using non-lagrange elements. J. Sci. Comput. 45(1–3), 64–89 (2010)

    MathSciNet  Google Scholar 

  8. Bourlioux, A., lyton, A.T., Minion, M.L.: High-order multi-implicit spectral defered correction methods for problem of reacting flow. J. Comput. Phys. 168, 464–499 (2001)

    Article  MathSciNet  Google Scholar 

  9. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximation of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: High order triangular finite element with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Luna, M.Q., Kuzmin, D., Tomov, V.Z., Kolev, T., Dobrev, V.A., Rieben, R.N., Anderson, R.: High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J. Comput. Phys. 334, 102–124 (2017)

    Article  MathSciNet  Google Scholar 

  12. Donea, J., Guilani, S., Laval, H.: Time-accurate solution of advection–diffusuin problems by finite elements. Comput. Methods Appl. Mech. Eng. 45(1–3), 123–145 (1984)

    Article  MATH  Google Scholar 

  13. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ern, A., di Pietro, D.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications. Springer, Berlin (2010)

    Google Scholar 

  15. Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). http://gmsh.info/

  16. Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)

    MATH  Google Scholar 

  17. Guermond, J.L., Pasquetti, R.: A correction technique for dispersive effects of mass lumping for transport problems. Comput. Methods Appl. Mech. Eng. 253, 186–198 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics. III: the generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jund, S., Salmon, S.: Arbitrary high-order finite element scheme and high-order mass lumping. Int. J. Appl. Math. Comput. Sci. 17(3), 375–393 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krivodonova, L.: Limiting for high-order discontinuous Galerkin schemes. J. Comput. Phys. 226, 879–896 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the defered correction time discretisation. J. Comput. Math. 26(5), 633–656 (2008)

    MATH  MathSciNet  Google Scholar 

  24. Löhner, R., Morgan, K., Zienkiewicz, O.C.: The solution of non-linear hyperbolic equation system by the finite element methods. Int. J. Numer. Methods Fluids 4, 1043–1063 (1984)

    Article  MATH  Google Scholar 

  25. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equaions. Commun. Math. Phys. 1(3), 471–500 (2003)

    MATH  Google Scholar 

  26. Ricchiuto, M., Abgrall, R.: Explicit Runge–Kutta residual-distribution schemes for time dependent problems. J. Comput. Phys. 229(16), 5653–5691 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Inter-Science, New-York (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

The financial support of the SNF (under Grant No. 200021_153604) is acknowledged. Many discussions with M. Ricchiuto (INRIA, Bordeaux Sud-Ouest, France) are acknowledged in the early stage of this work. S. Tokareva and P. Baccigalupi, both from the university of Zürich, are also acknowledged for their contributions in the early draft of this work. The contributions of A. Burbeau (CEA DEN, Saclay, France) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abgrall.

Appendices

Technical Results

Lemma A.1

Assume that K is convex and its aspect ratio is bounded by a constant C. If \(v\in \mathbb {P}_r(K)\), and \(v=\sum \limits _{\sigma \in K}v_\sigma \varphi _\sigma \), then

$$\begin{aligned} \sum _\sigma |v_\sigma -v_{\sigma '}|\le C_K \sum _\sigma |v(\sigma )-v({\sigma '})\big | \end{aligned}$$

where \(C_K\) is the \(L^\infty \) norm of the inverse of the matrix \((\varphi _\sigma (\sigma '))_{\sigma , \sigma '}\). and

$$\begin{aligned} h_K\sum _{K}|v_\sigma |\le C_K ||v||_{2,K} \end{aligned}$$

where \(C_K\) only depends on K via C.

Proof

We have \(v(\sigma )=\sum \limits _{\sigma '\in K}v(\sigma ')\varphi _{\sigma '}(\sigma )\), so that

$$\begin{aligned} \sum _{\sigma \in K}|v(\sigma )|\le C_1 \sum _{\sigma \in K}|v(\sigma )|^2\le C_1 ||A^{-1}||_2 \; \int _Kv^2(\mathbf {x}) d\mathbf {x}\end{aligned}$$

where A is the matrix \(A=(\int _K\varphi _{\sigma '}\varphi _\sigma )_{\sigma , \sigma '\in K}\), and \(C_1\) is the square root of the number of degrees of freedom in K.

By a scaling argument, \(||A^{-1}||_2\le C_K h_K^{-1}\) where \(C_K\) depends on the aspect ratio of K. Hence,

$$\begin{aligned} \sum _{\sigma \in K}|v_\sigma -v_{\sigma '}|\le C_K \sum _{\sigma \in K}|v(\sigma )-v(\sigma ')|\le \frac{C_K}{h_K}\int _K |v(\mathbf {x})-v(\sigma ')|d\mathbf {x}\end{aligned}$$

where \(C_k\) is the \(L^{\infty }\) norm of the matrix \((\varphi _{\sigma '})_{\sigma , \sigma '\in K}\). We have:

$$\begin{aligned} v(\mathbf {x})-v({\sigma '})=\int _0^1 \nabla v((1-s)\mathbf {x}+s\sigma ')\cdot (\mathbf {x}-\sigma ) ds, \end{aligned}$$

so that

$$\begin{aligned} \begin{aligned} \int _K |v(\mathbf {x})-v(\sigma ')|d\mathbf {x}&\le \int _K\int _0^1||\nabla v((1-s)\mathbf {x}+s\sigma ')|| \; ||\mathbf {x}-\sigma '|| d\mathbf {x}\\&\le h_K\; \; \int _K\bigg (\int _0^1||\nabla v((1-s)\mathbf {x}+s\sigma ')||^2 ds\bigg )^{1/2} d\mathbf {x}\\&\le h_K\bigg (\int _K\big (\int _0^1||\nabla v((1-s)\mathbf {x}+s\sigma ')||^2 ds\big ) d\mathbf {x}\bigg )^{1/2} \end{aligned} \end{aligned}$$

since \(s\mapsto \sqrt{s}\) is concave. Using Fubini, we then have

$$\begin{aligned} \int _K\big (\int _0^1||\nabla v((1{-}s)\mathbf {x}{+}s\sigma ')||^2 ds\big ) d\mathbf {x}=\int _{K\times [0,1]}||\nabla v((1-s)\mathbf {x}+s\sigma ')||^2{=}\int _K||\nabla v(\mathbf {x})||^2 \mathbf {x}\end{aligned}$$

because K is convex.

Collecting all the pieces, we get:

$$\begin{aligned} \sum _{\sigma \in K}|v_\sigma -v_{\sigma '}|\le C_K\; ||\nabla v||_{\mathcal {L}^2(K)} \end{aligned}$$

where \(C_K\) only depends on the aspect ratio of K. \(\square \)

Non-linear RDS Scheme for Steady the Steady Problem (13)

Consider one element K. Since there is no ambiguity, the drop, for the residuals, any reference to K in the following. The total residual is defined by

$$\begin{aligned} \Phi =\int _{\partial K} \mathbf {f}(u^h)\cdot \mathbf {n}\; d\partial K, \end{aligned}$$

and we introduce the Rusanov residuals:

where \(\bar{u}\) is the arithmetic average of of the \(u_\sigma 's\) on K and \(\alpha \) satisfies:

$$\begin{aligned} \alpha \ge \#K\; \max _{\sigma , \sigma '\in K} \bigg | \int _K \varphi _\sigma \nabla \varphi _{\sigma '}\cdot \nabla _u\mathbf {f}(u^h)\; d\mathbf {x}\bigg |. \end{aligned}$$

Here \(\#K\) is the number of degrees of freedom in K. This residual can be rewritten as

$$\begin{aligned} \Phi _\sigma ^{Rus}=\sum _{\sigma '\in K} c_{\sigma \sigma '}(u_\sigma -u_{\sigma '}) \end{aligned}$$

with

$$\begin{aligned} c_{\sigma \sigma '}=\int _K \varphi _\sigma \nabla \varphi _{\sigma '}\cdot \nabla _u\mathbf {f}(u^h)\; d\mathbf {x}-\dfrac{\alpha }{\#K}. \end{aligned}$$

Under the condition above, \(c_{\sigma \sigma '}\ge 0\) and hence we have a maximum principle.

The coefficients \(\beta _\sigma \) introduced in the relations (22) and (23) are defined by:

$$\begin{aligned} \beta _\sigma =\dfrac{\max (0,\frac{\Phi _\sigma ^{Rus}}{\Phi })}{ \sum \limits _{\sigma '\in K} \max (0,\frac{\Phi _{\sigma '}^{Rus}}{\Phi })}. \end{aligned}$$

and can be shown to be always defined, to garanty a local maximum principle for (22) and (23), see [6].

Some Properties of Non-linear RDS Schemes

This annex is devoted to the justification of some fact stated in Sect. 4.5, namely that the \(\mathcal {L}^2\) operator, i.e. for each element and each sub-time step p,

$$\begin{aligned} \int _K \psi _\sigma (V_p^{(l)}-V_0) dx+\int _K \mathcal {I}_l \Phi _\sigma ^\mathbf {x}\big (V_0), \ldots , \Phi _\sigma ^\mathbf {x}(V_{r+1}) \big ) \end{aligned}$$

can write

$$\begin{aligned} |K|\sum _{\sigma '\in K} a_{\sigma \sigma '}^K (V_{p,\sigma '}^{(l)}-V_{0,\sigma '}) +\Delta t\sum _{k=1}^{r+1} \theta _{k,r+1} \bigg \{\sum _{\sigma '\in K} c_{\sigma \sigma '}^k (V_{k,\sigma }^{(l)}-V^{(l)}_{k,\sigma '})\bigg \} \bigg ). \end{aligned}$$

with

  • \(a_{\sigma \sigma }^K=\gamma _\sigma ^K \frac{|K|}{\#K}\), \(\gamma _\sigma ^K\in [0,1]\) and \(\#K\) is the number of degrees of freedom in K

  • and \(c_{\sigma \sigma '}^k\ge 0\).

In the spirit of “Appendix B” and [6], we consider the following kind of nonlinear RDS. The Galerkin residuals are defined by

$$\begin{aligned} \Phi ^{K,Gal}_\sigma =\int _{\partial K}\varphi _\sigma \bigg (\sum _{k=1}^{r+1}\theta _{k,r+1} \mathbf {f}(V_k^{(l)})\bigg )\cdot \mathbf {n}-\int _K\nabla \varphi _\sigma \bigg ((\sum _{k=1}^{r+1}\theta _{k,r+1} \mathbf {f}(V_k^{(l)})\bigg ), \end{aligned}$$
(47)

from this one writes a Rusanov residual:

$$\begin{aligned} \Phi ^{K,Rus}_\sigma =\frac{|K|}{\# K} \big ( (V_{p,\sigma }^{(l)}-V_{0,\sigma }\big )+\Delta t\Phi _\sigma ^{K, Gal}+\Delta t\alpha _K\bigg ( \big \{ \sum _{k=1}^{r+1}\theta _{k,r+1}V_k^{(l)}\big \} -\overline{V}\bigg ) \end{aligned}$$

with

$$\begin{aligned} \overline{V}=\dfrac{1}{\# K}\bigg ( \sum _{\sigma \in K} \sum _{k=1}^{r+1}\theta _{k,r+1}V_k^{(l)}\bigg ) \end{aligned}$$

and \(\alpha _K\) larger than the maximum of the spectral radii of the Jacobian of the flux evaluated at the states \(V_k^{(l)}\), or even larger. Then one forms

$$\begin{aligned} \Phi _\sigma ^{K,\star }=\beta _\sigma ^K\Phi _{xt}^K \end{aligned}$$
(48)

where the total residual \(\Phi ^K\) is defined by

$$\begin{aligned} \Phi _{xt}^K=\int _K(V_p^{(l)}-V_0) dx+\int _{\partial K}\bigg (\sum _{k=1}^{r+1}\theta _{k,r+1} \mathbf {f}(V_k^{(l)})\bigg )\cdot \mathbf {n}\qquad \qquad \left( =\sum _{\sigma \in K}\Phi _\sigma ^{K, Gal}\right) \end{aligned}$$

and \(\beta _\sigma ^K\) by

$$\begin{aligned} \beta _\sigma ^K=\dfrac{\max (0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K})}{\sum _{\sigma '\in K} \max (0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K})}. \end{aligned}$$
(49)

Let us prove now that

$$\begin{aligned} a_{\sigma \sigma }^K=\gamma _\sigma ^K \frac{|K|}{\# K} \text { with }\gamma _\sigma ^K\in [0,1]. \end{aligned}$$
(50)

and

$$\begin{aligned} c_{\sigma \sigma '}^k\ge 0. \end{aligned}$$
(51)

Proof

We note that

$$\begin{aligned} \beta _\sigma ^K\Phi _{xt}^K=\gamma _\sigma ^K \Phi _\sigma ^{K, Rus} \end{aligned}$$

with

$$\begin{aligned} \gamma _\sigma ^K=\left\{ \begin{array}{ll} 0 &{} \text {if } \max \left( 0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K}\right) =0\\ \dfrac{1}{\sum _{\sigma '\in K} \max \left( 0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K}\right) } &{}\text { else} \end{array} \right. \end{aligned}$$

Since \(\sum \limits _{\sigma \in K}\Phi _\sigma ^{K,Rus}=\Phi _{xt}^K\), we have that:

$$\begin{aligned} \sum _{\sigma '\in K} \max \left( 0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K}\right) +\sum _{\sigma ' \in K} \max \left( 0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K}\right) = \sum _{\sigma '\in K} \left( \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K}\right) =1, \end{aligned}$$

so that

$$\begin{aligned} \sum _{\sigma '\in K} \max \left( 0, \frac{\Phi _\sigma ^{K,Rus}}{\Phi _{xt}^K}\right) \ge 1 \end{aligned}$$

and then \(\gamma _{\sigma }^K\in [0,1].\) We get the first property (50).

The second one (51) comes from the very definition of \(\beta _\sigma ^K\). \(\square \)

Remark C.1

In many practical applications, the residual that is considered is not (48) but

$$\begin{aligned} \Phi _\sigma ^{K,\star }=\beta _\sigma ^K\Phi _{xt}^K+\sum _{\text {edges of }K} h_K^2 \Gamma \int _e \bigg [\nabla \varphi _\sigma \bigg ]\bigg [\nabla \bigg ( \sum _{k=1}^{r+1}\theta _{k,r+1}V_k^{(l)}\bigg )\bigg ] \end{aligned}$$
(52)

with \(\beta _\sigma ^K\) defined as (49). Then (50) is still true because the term

$$\begin{aligned} \int _{\partial K}\bigg (\sum _{k=1}^{r+1}\theta _{k,r+1} \mathbf {f}(V_k^{(l)})\bigg )\cdot \mathbf {n}\qquad \qquad \left( =\sum _{\sigma \in K}\Phi _\sigma ^{K, Gal}\right) \end{aligned}$$

does not contain any time increment.

In some other, we modify the definition of the Rusanov residual into

$$\begin{aligned} \Phi ^{K,Rus}_\sigma =\Phi _\sigma ^{K, Gal}+\Delta t \alpha _K\bigg ( \big \{ \sum _{k=1}^{r+1}\theta _{k,r+1}V_k^{(l)}\big \} -\overline{V}\bigg ) \end{aligned}$$

with now

$$\begin{aligned} \Phi _\sigma ^{K, Gal}= & {} \int _K(V_p^{(l)}-V_0) \varphi _\sigma dx \Delta t \int _{\partial K}\varphi _\sigma \bigg (\sum _{k=1}^{r+1}\theta _{k,r+1} \mathbf {f}(V_k^{(l)})\bigg )\cdot \mathbf {n}\nonumber \\&-\Delta t\int _K\nabla \varphi _\sigma \bigg ((\sum _{k=1}^{r+1}\theta _{k,r+1} \mathbf {f}(V_k^{(l)})\bigg ) \end{aligned}$$

and we consider

$$\begin{aligned} \Phi _\sigma ^{K,\star }=(1-\ell )\bigg \{ \Phi _\sigma ^{K, Gal}+\sum _{\text {edges of }K} h_K^2 \Gamma \int _e \bigg [\nabla \varphi _\sigma \bigg ]\bigg [\nabla \bigg ( \sum _{k=1}^{r+1}\theta _{k,r+1}V_k^{(l)}\bigg )\bigg ]\bigg \} +\ell \Phi ^{K,Rus}_\sigma \end{aligned}$$
(53)

with

$$\begin{aligned} \ell =\dfrac{|\Phi ^K|}{\sum _{\sigma \in K} |\Phi _\sigma ^{K,Rus}|}. \end{aligned}$$
(54)

Then none of the properties hold formally true but we get a maximum principle experimentally.

Example of Suitable Runge–Kutta Method

Consider the problem

$$\begin{aligned} \dfrac{dy}{dt}=f(y) \end{aligned}$$

wit \(y_0=y(0)\). The Runge–Kutta method of [26] is:

$$\begin{aligned} \begin{aligned} y^{(0)}&=u^n\\ y^{(1)}&=y^{(0)}+\Delta t f(y^{(0)})\\ y^{(2)}&=y^{(1)}+\frac{\Delta t}{2}\bigg ( f(y^{(0)})+ f(y^{(1)})\bigg ) \end{aligned} \end{aligned}$$
(55)

We first show that this is indeed a DeC method.

Defining

$$\begin{aligned} \mathcal {L}^2(Y)=Y-Y_0+\frac{\Delta t}{2}\big (f(Y_0)+f(Y))\big ) \end{aligned}$$

and

$$\begin{aligned} \mathcal {L}^{(1)}(Y)=Y-Y_0+\Delta t f(Y_0), \end{aligned}$$

The first iteration leads to

$$\begin{aligned} \begin{aligned} y^{(1)}-y^{(0)}+\Delta t f(y^{(0)})=&\bigg (y^{(0)}-y^{(0)}+\Delta t f(y^{(0)})\bigg )\\&-\bigg ( y^{(0)} -y^{(0)}+\frac{\Delta t}{2}\bigg ( f(y^{(0)})+ f(y^{(0)})\bigg ) \end{aligned} \end{aligned}$$

i.e.

$$\begin{aligned} y^{(1)}=y^{(0)}+\Delta t f(y^{(0)}). \end{aligned}$$

The second iteration gives:

$$\begin{aligned} \begin{aligned} y^{(2)}-y^{(0)}+\Delta t f(y^{(0)})&=\bigg (y^{(1)}-y^{(0)}+\Delta t f(y^{(0)})\bigg )\\&-\bigg ( y^{(1)}-y^{(0)}+\frac{\Delta t}{2}\bigg ( f(y^{(0)})+ f(y^{(1)})\bigg ) \end{aligned} \end{aligned}$$

i.e.

$$\begin{aligned} y^{(2)}=y^{(1)}+ \frac{\Delta t}{2}\bigg ( f(y^{(0)})+ f(y^{(1)})\bigg ). \end{aligned}$$

From this, let us construct an example of RK scheme which is third order, using this method as a building block. We know the exact solution satisfies:

$$\begin{aligned} y(t_{n+1})=y(t_n))+\int _{t_n}^{t_{n+1}} f(y(s)) ds. \end{aligned}$$

Using Simpson formula, an approximation is:

$$\begin{aligned} y_{n+1}=y_n+\dfrac{\Delta }{6}\bigg ( f(y_n)+4 f(y_{n+1/2})+f(y_{n+1})\bigg ). \end{aligned}$$

To get a third odred approximation of this third order approximation of the exact solution, we need second order approximations of \(y_{n+1/2}\approx y(t_n+\frac{\Delta t}{2})\) and \(y_{n+1}\approx y(t_{n+1})\).

To do so, we can use the method (55) to extimate \(y_{n+1}\). And using the intermediate steps at \(t_n+\frac{\Delta t}{4}\) and \(t_n+\frac{\Delta t}{2}=t_{n+1/2}\), with (55) we get a second order approximation of \(y_{n+1/2}\).

Note we can save one iteration (or one step) by first evaluating \(y_{n+1/2}\) with (55) and using the second step of (55) to get a second order approximation of \(y_{n+1}\).

We have used this method for convextion problems, and we get similar results as with the method presented here, which is more systematic.

This can be extended as follows: one first start by a quadrature formula of order k of \(\int _{t_n}^{t_{n+1}}f(y(s))\) and we iteratively get approximations of order \(k-1\) of the quadrature points by induction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abgrall, R. High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices. J Sci Comput 73, 461–494 (2017). https://doi.org/10.1007/s10915-017-0498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0498-4

Navigation