Skip to main content
Log in

Optimal Selection of Local Approximants in RBF-PU Interpolation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The partition of unity (PU) method, performed with local radial basis function (RBF) approximants, has been proved to be an effective tool for solving large scattered data interpolation problems. However, in order to achieve a good accuracy, the question about how many points we have to consider on each local subdomain, i.e. how large can be the local data sets, needs to be answered. Moreover, it is well-known that also the shape parameter affects the accuracy of the local RBF approximants and, as a consequence, of the PU interpolant. Thus here, both the shape parameter used to fit the local problems and the size of the associated linear systems are supposed to vary among the subdomains. They are selected by minimizing an a priori error estimate. As evident from extensive numerical experiments and applications provided in the paper, the proposed method turns out to be extremely accurate also when data with non-homogeneous density are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16, 125–127 (1964)

    Article  Google Scholar 

  2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45, 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: an approximation method for noisy scattered data of extra-large size. Appl. Math. Comput. 216, 317–331 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions: Theory and Implementation. Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  6. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., Santin, G.: Partition of unity interpolation using stable kernel-based techniques. Appl. Numer. Math. (2016). doi:10.1016/j.apnum.2016.07.005

  7. Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching procedure. SIAM J. Sci. Comput. 37, A1891–A1908 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity interpolants through a block-based searching technique. Comput. Math. Appl. 71, 2568–2584 (2016)

    Article  MathSciNet  Google Scholar 

  9. Davydov, O.: http://www.staff.uni-giessen.de/~gc1266/t (2009)

  10. Davydov, O., Zeilfelder, F.: Scattered data fitting by direct extension of local polynomials to bivariate splines. Adv. Comput. Math. 21, 223–271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davydov, O., Morandi, R., Sestini, A.: Local hybrid approximation for scattered data fitting with bivariate splines. Comput. Aided Geom. Des. 23, 703–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  13. Deparis, S., Forti, D., Quarteroni, A.: A rescaled and localized radial basis functions interpolation on non-cartesian and non-conforming grids. SIAM J. Sci. Comput. 86, A2745–A2762 (2014)

    Article  MATH  Google Scholar 

  14. Driscoll, T.A.: Algorithm 843: improvements to the Schwarz–Christoffel toolbox for MATLAB. ACM Trans. Math. Softw. 31, 239–251 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  18. Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods Using MATLAB. World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  19. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45, 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golberg, M.A., Chen, C.S., Karur, S.R.: Improved multiquadric approximation for partial differential equations. Eng. Anal. Bound. Elem. 18, 9–17 (1996)

    Article  Google Scholar 

  22. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heryudono, A.R.H., Driscoll, T.A.: Radial basis function interpolation on irregular domain through conformal transplantation. J. Sci. Comput. 44, 286–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heryudono, A., Larsson, E., Ramage, A., Von Sydow, L.: Preconditioning for radial basis function partition of unity methods. J. Sci. Comput. 67, 1089–1109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iske, A.: Scattered data approximation by positive definite kernel functions. Rend. Sem. Mat. Univ. Pol. Torino 69, 217–246 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nielson, G.M.: A first-order blending method for triangles based upon cubic interpolation. Int. J. Numer. Methods Eng. 15, 308–318 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J. Sci. Comput. 64, 341–367 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schaback, R.: Remarks on meshless local construction of surfaces. In: Cipolla, R., et al. (eds.) The Mathematics of Surfaces, vol. IX, pp. 34–58. Springer, Berlin (2000)

    Chapter  Google Scholar 

  32. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 71, 185–200 (2016)

    Article  MathSciNet  Google Scholar 

  33. Trahan, C.J., Wyatt, R.E.: Radial basis function interpolation in the quantum trajectory method: optimization of the multi-quadric shape parameter. J. Comput. Phys. 185, 27–49 (2003)

    Article  MATH  Google Scholar 

  34. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  35. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Chui, C.K., Schumaker, L.L., Stöckler, J. (eds.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 473–483. Vanderbilt University Press, Nashville (2002)

    Google Scholar 

  36. Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yao, G., Duo, J., Chen, C.S., Shen, L.H.: Implicit local radial basis function interpolations based on function values. Appl. Math. Comput. 265, 91–102 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank the two anonymous referees for helping us to significantly improve our paper. This work was partially supported by the project “Metodi e modelli numerici per le scienze applicate” of the Department of Mathematics of the University of Turin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Perracchione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavoretto, R., De Rossi, A. & Perracchione, E. Optimal Selection of Local Approximants in RBF-PU Interpolation. J Sci Comput 74, 1–22 (2018). https://doi.org/10.1007/s10915-017-0418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0418-7

Keywords

Mathematics Subject Classification

Navigation