Skip to main content
Log in

Unconditionally Optimal Error Analysis of Crank–Nicolson Galerkin FEMs for a Strongly Nonlinear Parabolic System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present unconditionally optimal error estimates of linearized Crank–Nicolson Galerkin finite element methods for a strongly nonlinear parabolic system in \(\mathbb {R}^d\ (d=2,3)\). However, all previous works required certain time-step conditions that were dependent on the spatial mesh size. In order to overcome several entitative difficulties caused by the strong nonlinearity of the system, the proof takes two steps. First, by using a temporal-spatial error splitting argument and a new technique, optimal \(L^2\) error estimates of the numerical schemes can be obtained under the condition \(\tau \ge h\), where \(\tau \) denotes the time-step size and h is the spatial mesh size. Second, we obtain the boundedness of numerical solutions by mathematical induction and inverse inequality when \(\tau \le h\). Then, optimal \(L^2\) and \(H^1\) error estimates are proved in a different way for such case. Numerical results are given to illustrate our theoretical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cannon, J.R., Lin, Y.: Non-classical \(H^1\) projection and Galerkin methods for non-linear parabolic integro-differential equations. Calcolo 25, 187–201 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cannon, J.R., Lin, Y.: A priori \(L^2\) error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 27, 595–607 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems. Transl. Math. Monogr. vol. 174. AMS, Providence, RI (1998)

  4. Evans, L.C.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)

    MATH  Google Scholar 

  5. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farago, I.: Finite element method for solving nonlinear parabolic equations. Comput. Math. Appl. 21, 59–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank–Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garcia, S.: Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: the discrete-time case. Numer. Methods Partial Differ. Equ. 10, 149–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guermond, J.-L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228, 2834–2846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayes, L.J.: A modified backward time discretization for nonlinear parabolic equations using patch approximations. SIAM J. Numer. Anal. 18, 781–793 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kacur, J.: Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19, 119–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank–Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, D., Zhang, C., Wang, W., Zhang, Y.: Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations. Appl. Math. Model. 35, 2711–2722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40, 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Mei, L., Ge, J., Shi, F.: A new fractional time-stepping method for variable density incompressible flows. J. Comput. Phys. 242, 124–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, C., Walkington, J.: Convergence of numerical approximations of the incompressible Navier–Stokes equations with variable density and viscosity. SIAM J. Numer. Anal. 45, 1287–1304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16, 284–299 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Sup. Pisa. (3) 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  21. Qu, C.: Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method. IMA J. Appl. Math. 62, 283–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rachford Jr., H.H.: Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations. SIAM J. Numer. Anal. 10, 1010–1026 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sunmonu, A.: Galerkin method for a nonlinear parabolic-elliptic system with nonlinear mixed boundary conditions. Numer. Methods Partial Differ. Equ. 9, 235–259 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  28. Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, J., Sun, W.: Heat and sweat transport in fibrous media with radiation. Eur. J. Appl. Math. 25, 307–327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wazwaz, A.: Exact solutions to nonlinear diffusion equations obtained by the decomposition method. Appl. Math. Comput. 123, 109–122 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Wheeler, M.F.: A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  32. Zlámal, M.: Curved elements in the finite element method. I*. SIAM J. Numer. Anal. 10, 229–240 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilu Wang.

Additional information

The work of Dongfang Li was supported by a grant from the National Science Foundation of China (Grant No. 11571128), China Postdoctoral Science Foundation (Grant No. 2016M602273) and the Research Grants Council of the Hong Kong Special Administrative Region (Project No. CityU 102613).

The work of Jilu Wang was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 102613).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, J. Unconditionally Optimal Error Analysis of Crank–Nicolson Galerkin FEMs for a Strongly Nonlinear Parabolic System. J Sci Comput 72, 892–915 (2017). https://doi.org/10.1007/s10915-017-0381-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0381-3

Keywords

Navigation