Skip to main content
Log in

Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The paper is concerned with the unconditional stability and optimal \(L^2\) error estimates of linearized Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system in \({\mathbb {R}}^d\) (\(d=2,3\)). By introducing a corresponding time-discrete system, we separate the error into two parts, i.e., the temporal error and the spatial error. Since the latter is \(\tau \)-independent, the uniform boundedness of numerical solutions in \(L^{\infty }\)-norm follows an inverse inequality immediately without any restrictions on time stepsize. Then, optimal error estimates are obtained in a routine way. Numerical examples in both two and three dimensional spaces are given to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Mauser, N.J., Stimming, H.P.: Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger–Poisson-X$\alpha $ model. Commun. Math. Sci. 1, 809–828 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  6. Bohun, S., Illner, R., Lange, H., Zweifel, P.F.: Error estimates for Galerkin approximations to the periodic Schrödinger–Poisson system, ZAMM$\cdot $Z. Angew. Math. Mech. 76, 7–13 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borz, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bratsos, A.G.: A modified numerical scheme for the cubic Schrödinger equation. Numer. Methods Part Differ. Equ. 27, 608–620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cannon, J.R., Lin, Y.: Nonclassical $H^1$ projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo 25, 187–201 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, Y., Musslimani, Z.H., Titi, E.S.: Nonlinear Schrödinger–Helmholtz equation as numercal regularization of the nonlinear Schrödinger equation. Nonlinearity 21, 879–898 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z., Hoffmann, K.-H.: Numerical studies of a non-stationary Ginzburg–Landau model for superconductivity. Adv. Math. Sci. Appl. 5, 363–389 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Taleei, A.: Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method. Numer. Methods Part Differ. Equ. 26, 979–990 (2010)

    MATH  Google Scholar 

  14. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dupont, T., Fairweather, G., Johnson, J.P.: Three-level Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 11, 392–410 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger–Newton equations. Nonlinearity 16, 101–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, J., Wu, X.: Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain. J. Comput. Appl. Math. 220, 240–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leo, M.D., Rial, D.: Well posedness and smoothing effect of Schrödinger–Poisson equation. J. Math. Phys. 48, 093509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems, Ph.D. thesis, City University of Hong Kong, Hong Kong (2012)

  22. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, B.K., Fairweather, G., Bialecki, B.: Discrete-time orthogonal spline collocation methods for Schrödinger equations in two space variables. SIAM J. Numer. Anal. 35, 453–477 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liao, H., Sun, Z., Shi, H.: Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer Anal. 47, 4381–4401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. López-Marcos, J.C., Sanz-Serna, J.M.: A definition of stability for nonlinear problems. In: Numerical Treatment of Differential Equations. Teubner-Texte zur Mathematik, Band 104, Leipzig, pp. 216–226 (1988)

  27. Lu, T., Cai, W.: A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger–Poisson equations with discontinuous potentials. J. Comput. Appl. Math. 220, 588–614 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  29. Masaki, S.: Energy solution to a Schrödinger–Poisson system in the two-dimensional whole space. SIAM J. Math. Anal. 43, 2719–2731 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mu, M., Huang, Y.: An alternating Crank–Nicolson method for decoupling the Ginzburg–Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pathria, D.: Exact solutions for a generalized nonlinear Schrödinger equation. Phys. Scr. 39, 673–679 (1989)

    Article  Google Scholar 

  32. Pelinovsky, D.E., Afanasjev, V.V., Kivshar, Y.S.: Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. Phys. Rev. E 53, 1940–1953 (1996)

    Article  Google Scholar 

  33. Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sanz-Serna, J.M.: Methods for the numerical solution of nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)

    Article  MATH  Google Scholar 

  35. Schürmann, H.W.: Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation. Phys. Rev. E 54, 4312–4320 (1996)

    Article  Google Scholar 

  36. Stimming, H.P.: The IVP for the Schrödinger–Poisson-X$\alpha $ equation in one dimension. Math. Models Methods Appl. Sci. 8, 1169–1180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  38. Sun, W., Wang, J.: Optimal error analysis of Crank–Nicolson schemes for a coupled nonlinear Schrödinger system in 3D. J. Comput. Appl. Math. 317, 685–699 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, Z., Zhao, D.: On the $L_{\infty }$ convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 59, 3286–3300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Temam, R.: Naiver–Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam (1979)

    Google Scholar 

  41. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  42. Tourigny, Y.: Optimal $H^1$ estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, T., Guo, B., Zhang, L.: New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 217, 1604–1619 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Wu, H., Ma, H., Li, H.: Optimal error estimates of the Chebyshev–Legendre spectral method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659–672 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Y., Dong, X.: On the computation of ground state and dynamics of Schrödinger–Poisson–Slater system. J. Comput. Phys. 220, 2660–2676 (2011)

    Article  MATH  Google Scholar 

  46. Zlámal, M.: Curved elements in the finite element method. $\text{ I }^*$. SIAM J. Numer. Anal. 10, 229–240 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. M2AN Math. Model. Numer. Anal. 35, 389–405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Weiwei Sun for the valuable discussions. The author would also like to thank the anonymous referees for their suggestions and comments, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilu Wang.

Additional information

The work of the author was supported in part by the USA National Science Foundation Grant DMS-1315259, the USA Air Force Office of Scientific Research Grant FA9550-15-1-0001, and a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11300517).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system. Numer. Math. 139, 479–503 (2018). https://doi.org/10.1007/s00211-017-0944-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0944-0

Keywords

Mathematics Subject Classification

Navigation