Skip to main content
Log in

Optimized Overlapping Schwarz Waveform Relaxation for a Class of Time-Fractional Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For parabolic PDEs with integer-order temporal derivative, if we use the Schwarz waveform relaxation (SWR) algorithm with Robin transmission conditions as the solver, the so-called equioscillation principle is an important concept to get a good Robin parameter, which has a significant effect on the convergence rate of the algorithm. Surprisingly, as we show in this paper such a principle may result in rather disappointing Robin parameter for the SWR algorithm when we use it to solve time-fractional PDEs. For a class of time-fractional diffusion equations, by analyzing a new min–max problem we get much better Robin parameter, which is found very close to the best one that we can make through numerical optimizations and numerical experiments. To use the SWR algorithm in practice, we apply the kernel reduction technique proposed recently by Baffet and Hesthaven to treat the convolutions with kernel function of the form \(\mathscr {K}_{\gamma }(t)=t^{-\gamma }/\varGamma (1-\gamma )\), where \(\gamma \in (0, 1)\). For time-fractional PDEs with this kind of kernel function, the kernel reduction technique results in efficient one-step numerical schemes. Numerical results obtained by using this technique confirm our theoretical conclusions very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Since sign\(\left( \partial _q\mathscr {\widetilde{R}}(\omega , q)\right) =\,\)sign\(\left( q-2L\sqrt{\lambda _R^2(\omega )+\lambda _I^2(\omega )}\right) \), it suffices to consider \(q\in [q_{\min }, q_{\max }]\).

References

  1. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Baffet, D.H., Hesthaven, J.S.: A Laplace transform based kernel reduction scheme for fractional differential equations. SIAM J. Numer. Anal. (2016, in review). https://infoscience.epfl.ch/record/212955/files/KR_FDE%20Final?version=1

  3. Baffet, D.H., Hesthaven, J.S.: High-order adaptive methods for fractional differential equations using a reduced kernel formulation. J. Sci. Comput. (2016, in review). https://infoscience.epfl.ch/record/218072/files/FDEsKR_adapt?version=1

  4. Bouajaji, M.E., Dolean, V., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 34(4), A2048–A2071 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput. 78(265), 185–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennequin, D., Gander, M.J., Gouarin, L., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions. Numer. Math. (2016, in press). doi:10.1007/s00211-015-0784-8

  7. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18(02), 321–350 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dolean, V., Gander, M.J., Lanteri, S., Lee, J.F., Peng, Z.: Effective transmission conditions for domain decomposition methods applied to the time-harmonic curl–curl Maxwell’s equations. J. Comput. Phys. 280, 232–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolean, V., Gander, M.J., Gerardo-Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gander, M.J., Stuart, A.M.: Space–time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giladi, E., Keller, H.B.: Space–time domain decomposition for parabolic problems. Numer. Math. 93(2), 279–313 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halpern, L., Szeftel, J.: Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation. Math. Models Methods Appl. Sci. 20 (12), 2167–2199 (2010). CNRS (a closely related Technical Report by the same authors is given in 2006). http://hal.ccsd.cnrs.fr/ccsd-00067733

  15. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100(12), 128103 (2008)

    Article  Google Scholar 

  16. Hoang, T.T.P., Jaffré, J., Japhet, C., Kern, M., Roberts, J.E.: Space–time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51(6), 3532–3559 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoang, T.T.P., Japhet, C., Kern, M., Roberts, J.E.: Space–time domain decomposition for reduced fracture models in mixed formulation. SIAM J. Numer. Anal. 54(1), 288–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. (2017). doi:10.4208/cicp.OA-2016-0136

  19. Jiang, Y.L., Zhang, H.: Schwarz waveform relaxation methods for parabolic equations in space–frequency domain. Comput. Math. Appl. 55(12), 2924–2939 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52(4), 413–425 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lemarié, F., Debreu, L., Blayo, E.: Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Part 1: the constant coefficients case. Electron. Trans. Numer. Anal. 40, 148–169 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions. SIAM J. Appl. Math. 71(4), 1168–1203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59(6), 761–808 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martin, V.: Schwarz waveform relaxation algorithms for the linear viscous equatorial shallow water equations. SIAM J. Sci. Comput. 31(5), 3595–3625 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nourtier-Mazauric, E., Blayo, E.: Towards efficient interface conditions for a Schwarz domain decomposition algorithm for an advection equation with biharmonic diffusion. Appl. Numer. Math. 60(1), 83–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999). 1999

    MATH  Google Scholar 

  31. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, S.L., Huang, T.: Schwarz waveform relaxation for a neutral functional partial differential equation model of lossless coupled transmission lines. SIAM J. Sci. Comput. 35(2), A1161–A1191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W., Yang, J., Zhang, J.W., Du, Q.: Artificial boundary conditions for nonlocal heat equations on unbounded domain. Commun. Comput. Phys. 21(1), 16–39 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhang, H., Jiang, Y.L.: A note on the H1-convergence of the overlapping Schwarz waveform relaxation method for the heat equation. Numer. Algorithms 66(2), 299–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for the careful reading of a preliminary version of the manuscript and their valuable suggestions and comments, which greatly improve the quality of this paper. This work was supported by the NSF of China (61573010, 11371157, 11671074), the Project of China Postdoctoral Science Foundation (2015M580777, 2016T90841), the NSF of Technology & Education of Sichuan Province (2014JQ0035, 15ZA0220) and the NSF of SUSE (2015LX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Lin Wu.

The Proof of Lemma 2.4

The Proof of Lemma 2.4

Proof

For the function \(\mathscr {R}\) defined by (2.9b), we have

$$\begin{aligned} \partial _q\mathscr {R}(y,q)=4y\frac{q^2-(1+\phi )y^2}{\left[ (y+q)^2+\phi y^2\right] ^2}e^{-y}= 4y\frac{(q+\sqrt{1+\phi }y)(q-\sqrt{1+\phi }y)}{\left[ (y+q)^2+\phi y^2\right] ^2}e^{-y}. \end{aligned}$$
(5.1)

Hence, for \(y\in [y_0, y_1]\) the solution \(q_\mathrm{opt}\) of (2.9a) satisfies \(\sqrt{1+\phi }y_0\le q_\mathrm{opt}\le \sqrt{1+\phi }y_1\), since otherwise, if \(q_\mathrm{opt}<\sqrt{1+\phi }y_0\) (resp. \(q_\mathrm{opt}>\sqrt{1+\phi }y_1\)), we can further uniformly reduce \(\mathscr {R}\) by increasing (resp. decreasing) the value of \(q_\mathrm{opt}\). Hence, it suffices to study

$$\begin{aligned} \underset{q\in [q_0, q_1]}{\min }\underset{y\in [y_0, y_1]}{\max }\mathscr {R}(y,q), \end{aligned}$$
(5.2)

where \(q_0=y_0\sqrt{1+\phi }\) and \(q_1=y_1\sqrt{1+\phi }\).

A routine calculation shows that, for a given \(q\in [q_0, q_1]\) the function \(\mathscr {R}\) has at most two local extremums, located at

$$\begin{aligned} \bar{y}_{\pm }(q)=\frac{1}{1+\phi }\sqrt{(1-\phi )q^2+2(1+\phi )q\pm 2q\sqrt{d(q)}}, \end{aligned}$$

where \(d(q)=-\phi q^2-2\phi (1+\phi )q+(1+\phi )^2\) is the discriminant. Since \(\mathscr {R}(y,q)\rightarrow 0\) as \(y\rightarrow +\infty \), the larger one \(\bar{y}_+(q)\) must be a local maximizer. This local maximizer does not always exist and by letting \(d(q)>0\) we know that it exists for \(q\in \left( 0, q_d\right) \), where \(q_d=(1+\phi )\left( \sqrt{1+{1}/{\phi }}-1\right) \). By using \(\mathscr {R}(+\infty ,q)=0\) and \(\mathscr {R}(0,q)=1\), we know that for \(q=q_d\), i.e., \(d(q)=0\), the function \(\mathscr {R}\) is strictly decreasing for \(y>0\).

Case (A) If \(y_0\ge \sqrt{1+\phi }\left( \sqrt{1+{1}/{\phi }}-1\right) \). In this case, we have \(d(q)\le 0\) for \(q\in [q_0, q_1]\). Hence, \(\mathscr {R}_{\max }(q):={\max }_{y\in [y_0, y_1]}\mathscr {R}(y,q)=\mathscr {R}_{\dag }(q)\), with \(\mathscr {R}_{\dag }(q):=\max \left\{ \mathscr {R}(y_0,q), \mathscr {R}(y_1,q)\right\} \). From (5.1), it is easy to know that the function \(\mathscr {R}(y_0,q)\) (resp. \(\mathscr {R}(y_1,q)\)) is an increasing (resp. decreasing) function of q when \(q\in [q_0, q_1]\). Then, it can be shown that for \(q\in [q_0, q_1]\) the function \(\mathscr {R}_{\dag }\) attains its global minimum at \(q=q_{\dag }\), where \(q_{\dag }\) is given by (2.10b); this implies \(q_\mathrm{opt}=q_{\dag }\). We have

$$\begin{aligned} \mathscr {R}_{\dag }(q):=\max \left\{ \mathscr {R}(y_0,q), ~~\mathscr {R}(y_1,q)\right\} = {\left\{ \begin{array}{ll} \mathscr {R}(y_1,q), &{}\text {if}~q\in [q_0, q_{\dag }),\\ \mathscr {R}(y_0,q), &{}\text {if}~q\in (q_{\dag }, q_1], \end{array}\right. } \end{aligned}$$
(5.3)

where, for any real numbers \(I_1\) and \(I_2\), the set \([I_1, I_2)\) (or \((I_1, I_2]\)) is empty if \(I_1\ge I_2\).

Case (B) \(y_0<\sqrt{1+\phi }\left( \sqrt{1+{1}/{\phi }}-1\right) <y_1\). In this case, it is clear that \(q_1>q_d>q_0\). We claim \(\bar{y}_+(q)>y_0\) for \(q\in \left[ q_0, q_d\right] \). Note that, for any \(q\in [q_0, q_1]\) we have

$$\begin{aligned} \bar{y}_+(q)>y_0\Leftrightarrow (1-\phi )q^2+2(1+\phi )q+2q\sqrt{d(q)}>(1+\phi )^2y_0^2. \end{aligned}$$

Hence, it is sufficient to prove \((1-\phi )q_0^2+2(1+\phi )q_0>(1+\phi )^2y_0^2\). Since

$$\begin{aligned} (1-\phi )q_0^2+2(1+\phi )q_0>(1+\phi )^2y_0^2\Leftrightarrow y_0< {\sqrt{1+\phi }}/{\phi }, \end{aligned}$$

it is sufficient to prove \(\sqrt{1+\phi }\left( \sqrt{1+{1}/{\phi }}-1\right) <{\sqrt{1+\phi }}/{\phi }\). By noticing

$$\begin{aligned} \forall \phi \in (0, 1),~ \sqrt{{1}/{\phi }+1}>1\Rightarrow \sqrt{1+\phi }\left( \sqrt{1+ {1}/{\phi }}-1\right) <{\sqrt{1+\phi }}/{\phi }, \end{aligned}$$

we finally get \(\bar{y}_+(q)>y_0\) for \( q\in \left[ q_0, q_d\right] \). Now, by using \(q_d<q_1\) and the continuity of \(\max _{y\in [y_0, y_1]}\mathscr {R}(y,q)\) with respect to q, we have

$$\begin{aligned} \mathscr {\bar{R}}(q_d)\le \mathscr {R}^{\dag }(q_d). \end{aligned}$$
(5.4)

We next claim \({d\mathscr {\bar{R}}(q)}/{dq}<0\) for \(q\in [q_0, q_d]\). From (5.1), we have

$$\begin{aligned} \begin{aligned} \frac{d\mathscr {\bar{R}}(q)}{dq}&=\frac{\partial \mathscr {R}(\bar{y}_+,q)}{\partial q}+\frac{\partial \mathscr {R}(\bar{y}_+,q)}{\partial y}\times \frac{d\bar{y}_+(q)}{dq}\\&=4\bar{y}_+\frac{(q+\sqrt{1+\phi } \bar{y}_+)(q-\sqrt{1+\phi }\bar{y}_+)}{\left[ (\bar{y}_++q)^2+\phi \bar{y}_+^2\right] ^2}e^{-\bar{y}_+}, \end{aligned} \end{aligned}$$

where we used the fact that \(\bar{y}_+\) is the local maximizer of \(\mathscr {R}\), that is \(\frac{\partial \mathscr {R}(\bar{y}_+,q)}{\partial y}=0\). Then, it holds that

$$\begin{aligned} q-\sqrt{1+\phi }\bar{y}_+(q)<0\Leftrightarrow \phi q-1-\phi<\sqrt{d(q)}\Leftarrow \phi q-1-\phi<0\Leftarrow \phi q_d-1-\phi <0, \end{aligned}$$

where the last inequality holds for any \(\phi \in (0, 1)\), because

$$\begin{aligned} \phi q_d-1-\phi<0\Leftrightarrow \phi \left( \sqrt{1+{1}/{\phi }}-1\right) -1<0\Leftrightarrow \sqrt{\phi }<\sqrt{1+\phi }. \end{aligned}$$

Therefore, \({d\mathscr {\bar{R}}(q)}/{dq}<0\) and this implies that the function \(\mathscr {\bar{R}}(q)\) is decreasing for \(q\in [q_0, q_d]\). Based on the above analysis, we next consider the following two cases.

\({{\textcircled {{1}}}}\) \(q_{\dag }<q_d\), \({\bar{y}}(q_{\dag })<y_1\) and \(\mathscr {\bar{R}}(q_{\dag })>\mathscr {R}^{\dag }(q_{\dag })\). In this case, it must hold \(q_{\dag }<q_1\), since otherwise we have \(q_d>q_1\) and this leads to contradiction. Hence, it holds that \(\mathscr {R}^{\dag }(q)=\mathscr {R}(y_0, q)\) for \(q\in [q_{\dag }, q_1]\). Then, by using \({\bar{y}}(q_{\dag })<y_1\), \(\mathscr {\bar{R}}(q_{\dag })>\mathscr {R}^{\dag }(q_{\dag })\) and (5.4), we know that the equation \(\mathscr {R}(y_0, q)=\mathscr {\bar{R}}(q)\) has a unique root \(q_0^*\in (q_{\dag }, q_d)\) and that \(\mathscr {R}_{\max }(q)\left( :=\max _{y\in [y_0, y_1]}\mathscr {R}(y,q)\right) \) attains its global minimum at \(q_0^*\), because \(\mathscr {\bar{R}}(q)\) and \(\mathscr {R}(y_0,q)\)) are respectively decreasing and increasing functions of q.

\({{\textcircled {{2}}}}\) If any one of the conditions in \({{\textcircled {{1}}}}\) is not satisfied, we claim

$$\begin{aligned} \max _{y\in [y_0, y_1]}\mathscr {R}(y,q_{\dag })=\mathscr {R}^{\dag }(q_{\dag }). \end{aligned}$$
(5.5)

Indeed, this can be proved by using (5.4) and the fact that “both \(\mathscr {\bar{R}}(q)\) and \(\mathscr {R}(y_1,q)\) are decreasing functions, but \(\mathscr {R}(y_0, q)\) is an increasing function”. For example, if \(q_{\dag }=q_d\), by using (5.4) we know that (5.5) holds. For the case \(q_{\dag }>q_d\) or \({\bar{y}}(q_{\dag })\ge y_1\), (5.5) can be proved similarly. Now, let \(\mathbb {Q}=\left\{ q: q\in [q_0, q_d]\text { and }\bar{y}_+(q)<y_1\right\} \) and \(\mathbb {Q}_0=[q_0,q_1]/\mathbb {Q}\). Then, we have

$$\begin{aligned} \begin{aligned}&\min _{q\in [q_0, q_1]}\max _{y\in [y_0, y_1]}\mathscr {R}(y,q)=\min \left\{ \min _{q\in \mathbb {Q}}\max \left\{ \mathscr {\bar{R}}(q), \mathscr {R}^{\dag }(q)\right\} , \min _{q\in \mathbb {Q}_0}\mathscr {R}^{\dag }(q)\right\} \\&\quad \ge \min \left\{ \min _{q\in \mathbb {Q}} \mathscr {R}^{\dag }(q), \min _{q\in \mathbb {Q}_0}\mathscr {R}^{\dag }(q)\right\} =\min _{q\in [q_0, q_1]}\mathscr {R}^{\dag }(q)=\mathscr {R}^{\dag }(q_{\dag }). \end{aligned} \end{aligned}$$
(5.6)

This, together with (5.5), implies that the function \(\mathscr {R}_{\max }(q)\left( =\max _{y\in [y_0, y_1]}\mathscr {R}(y,q)\right) \) can reach the lower bound \(\mathscr {R}^{\dag }(q_{\dag })\); hence, the conclusion \(q_\mathrm{opt}=q_{\dag }\) follows.

Case (C) \(y_1\le \sqrt{1+\phi }\left( \sqrt{1+{1}/{\phi }}-1\right) \). In this case, we have \(q_d\ge q_1\) and therefore the local maximizer \(\bar{y}_{+}(q)\) exists for all \(q\in [q_0, q_1]\). The first case in (2.12) has been analyzed in Case (B). For \(\bar{y}_+\left( q_{\dag }\right) < y_1\), \(\mathscr {\bar{R}}(q_{\dag })>\mathscr {{R}}^{\dag }(q_{\dag })\) and \(\bar{y}_+(q_1)\ge y_1\), the analysis is also similar to Case (B). If \(\bar{y}_+\left( q_{\dag }\right) < y_1\), \(\mathscr {\bar{R}}(q_{\dag })>\mathscr {{R}}^{\dag }(q_{\dag })\), \(\bar{y}_+(q_1)<y_1\) and \(\mathscr {\bar{R}}(q_1)<\mathscr {{R}}^{\dag }(q_1)\), we have

$$\begin{aligned} \mathscr {R}_{\max }(q_{\dag })=\max _{y\in [y_0, y_1]}\mathscr {R}(y, q_{\dag })=\mathscr {\bar{R}}(q_{\dag }),~~\mathscr {R}_{\max }(q_1)=\max _{y\in [y_0, y_1]}\mathscr {R}(y, q_1)=\mathscr {R}^{\dag }(q_1). \end{aligned}$$

This implies that, the equation \(\mathscr {\bar{R}}(q)=\mathscr {R}^{\dag }(q)\) has a unique solution \(q^*_0\in (q_{\dag }, q_1)\), which is the global minimizer, because \(\mathscr {\bar{R}}(q)\) and \(\mathscr {R}^{\dag }(q)\) are respectively decreasing and increasing functions for \(q\in (q_{\dag }, q_1)\). For the last case, if \(q_{\dag }=q_1\), by using the fact that “both \(\mathscr {\bar{R}}(q)\) and \(\mathscr {R}(y_1,q)\) are decreasing functions”, it is easy to get \(q_\mathrm{opt}=q_1\); otherwise, it shall holds that \(\mathscr {\bar{R}}(q)\ge \mathscr {R}^{\dag }(q)\) for all \(q\in [q_{\dag }, q_1]\) and because of the decreasing property of \(\mathscr {\bar{R}}(q)\), we also have \(q_\mathrm{opt}=q_1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SL. Optimized Overlapping Schwarz Waveform Relaxation for a Class of Time-Fractional Diffusion Problems. J Sci Comput 72, 842–862 (2017). https://doi.org/10.1007/s10915-017-0379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0379-x

Keywords

Mathematics Subject Classification

Navigation