Skip to main content
Log in

Improved ADI Scheme for Linear Hyperbolic Equations: Extension to Nonlinear Cases and Compact ADI Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

By introducing appropriate intermediate variables and simplifying inhomogeneous terms of the traditional ADI schemes, an improved ADI scheme is proposed for linear hyperbolic equations and this ADI scheme is extended to nonlinear hyperbolic equations and compact ADI schemes in the present work. Meanwhile, the boundary and initial conditions are carefully analyzed to match the accuracy of these improved ADI schemes. Although the common (without compactification) and compact improved ADI schemes have the same accuracy with the corresponding traditional ADI schemes, respectively, it is not just a simple variant of ADI schemes for hyperbolic equations. Both theoretical analysis and numerical experiments show that compared with the traditional ADI scheme, the improved ADI scheme is more efficient for linear hyperbolic equations and more stable for nonlinear hyperbolic equations without loss of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greiner, W.: Classical electrodynamics. Springer, Berlin (2012)

    Google Scholar 

  2. Mullis, A.M.: Rapid solidification within the framework of a hyperbolic conduction model. Int. J. Heat Mass Trans. 40(17), 4085–4094 (1997)

    Article  MATH  Google Scholar 

  3. Galenko, P.K., Danilov, D.A.: Hyperbolic self-consistent problem of heat transfer in rapid solidification of supercooled liquid. Phys. Lett. A 278(3), 129–138 (2000)

    Article  Google Scholar 

  4. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peaceman, D.W., Rachford, H.H., Henry, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gourlay, A., Mitchell, A.R.: The equivalence of certain alternating direction and locally one-dimensional difference methods. SIAM J. Numer. Anal. 6, 37–46 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lees, M.: Alternating direction methods for hyperbolic differential equations. J. Soc. Ind. Appl. Math. 10, 610–616 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gourlay, A.R., Mitchell, A.R.: A classification of split difference methods for hyperbolic equations in several space dimensions. SIAM J. Numer. Anal. 6, 62–71 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mohanty, R.K.: An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions. Appl. Math. Comput. 152, 799–806 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Mohanty, R.K.: An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 162, 549–557 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Mohanty, R.K., Jain, M.K., Arora, U.: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions. Int. J. Comput. Math. 79, 133–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciment, M., Leventhal, S.H.: Higher order compact implicit schemes for the wave equation. Math. Comput. 29, 985–994 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, W., Nassar, R.: Compact ADI method for solving parabolic differential equations. Numer. Meth. Part. Differ. Equ. 18, 129–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, H., Zhang, Y.: A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation. J. Comput. Appl. Math. 230, 626–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohanty, R.K., Jain, M.K.: An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numer. Meth. Part. Differ. Equ. 17, 684–688 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Meth. Part. Differ. Equ. 24, 1080–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mohanty, R.K.: New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. Int. J. Comput. Math. 86, 2061–2071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deng, D., Zhang, C.: Application of a fourth-order compact ADI method to solve a two-dimensional linear hyperbolic equation. Int. J. Comput. Math. 90, 273–291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng, D., Zhang, C.: Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables. Numer. Alg. 63, 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohanty, R., Jain, M., Arora, U.: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions. Int. J. Comput. Math. 79, 133–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karaa, S.: Unconditionally stable ADI scheme of higher-order for linear hyperbolic equations. Int. J. Comput. Math. 87, 3030–3038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cui, M.: High order compact Alternating Direction Implicit method for the generalized sine-Gordon equation. J. Comput. Appl. Math. 235, 837–849 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deng, D., Zhang, C.: A new fourth-order numerical algorithm for a class of three-dimensional nonlinear evolution equations. Numer. Meth. Part. Differ. Equ. 29, 102–130 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jain, M.K.: Numerical Solution of Differential Equations. Wiley, New Delhi (1984)

    MATH  Google Scholar 

  26. Mohanty, R.K., George, K., Jain, M.K.: High accuracy difference schemes for a class of singular three space dimensional hyperbolic equations. Int. J. Comput. Math. 56, 185–198 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (Grant Nos. 51531009 and 51474239), and Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51611130058) is greatly acknowledged. Authors would like to thank reviewers of this paper for their positive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Cai, D. & Du, Y. Improved ADI Scheme for Linear Hyperbolic Equations: Extension to Nonlinear Cases and Compact ADI Schemes. J Sci Comput 72, 500–521 (2017). https://doi.org/10.1007/s10915-017-0366-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0366-2

Keywords

Navigation