Skip to main content
Log in

A family of linearly weighted-\(\theta \) compact ADI schemes for sine-Gordon equations in high dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper proposes a family of weighted-\(\theta \) high-order ADI schemes for sine-Gordon equations in high dimensions in combination with the discretization of a three-level linearized scheme in temporal direction and a classical compact difference scheme in spatial direction. The unique solvability, convergence and stability of the difference scheme in two dimensions are strictly proved with the convergence order four in space and order two in time under the \(L^\infty \)-norm. More remarkably, the present numerical scheme can be extended to cope with the three-dimensional case feasibly. Several benchmark problems in two and three dimensions verify theoretical results and the capacity in simulating the dynamic behaviour of ring solitons. Specially, several novel numerical isosurfaces in three dimensions are presented for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data and code availability

The data and codes can be found at https://github.com/zhangqifeng0504/sine_Gordon.

References

  1. Almushaira, M.: Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation. Appl. Math. Comput. 451, 128039 (2023)

    MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Herbst, B.M., Schober, C.: On the numerical solution of the sine-Gordon equation, I. integrable discretizations and homoclinic manifolds. J. Comput. Phys. 126, 299–314 (1996)

    Article  MathSciNet  Google Scholar 

  3. Ablowitz, M.J., Herbst, B.M., Schober, C.: On the numerical solution of the sine-Gordon equation, II. performance of numerical schemes. J. Comput. Phys. 131, 354–367 (1997)

    Article  MathSciNet  Google Scholar 

  4. Aktosun, T., Demontis, F., Mee, C.: Exact solutions to the sine-Gordon equation. J. Math. Phys. 51(12), 123521 (2010)

    Article  MathSciNet  Google Scholar 

  5. Argyris, J., Haase, M., Heinrich, J.: Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Engrg. 86, 1–26 (1991)

    Article  MathSciNet  Google Scholar 

  6. Batiha, B., Noorani, M.S.M., Hashim, I.: Numerical solution of sine-Gordon equation by variational iteration method. Phys. Lett. A 370, 437–440 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bour, E.: Théorie de la déformation des surfaces. J. Ecole. Imperiale. Polytechnique. 19, 1–48 (1862)

    Google Scholar 

  8. Bratsos, A.G.: A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation. Numer. Algor. 43, 295–308 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bratsos, A.G.: The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 206, 251–277 (2007)

    Article  MathSciNet  Google Scholar 

  10. Cai, W., Jiang, C., Wang, Y., Song, Y.: Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 395, 166–185 (2019)

    Article  MathSciNet  Google Scholar 

  11. Christiansen, P., Lomdahl, P.: Numerical solution of 2\(+\)1 dimensional sine-Gordon solitons. Physica D 2(3), 482–494 (1981)

    Article  MathSciNet  Google Scholar 

  12. Cui, M.: High order compact alternating direction implicit method for the generalized sine-Gordon equation. J. Comput. Appl. Math. 235(3), 837–849 (2010)

    Article  MathSciNet  Google Scholar 

  13. Dai, Z., Xian, D.: Homoclinic breather-wave solutions for sine-Gordon equation. Commun. Nonlinear SCI. 14(8), 3292–3295 (2009)

    Article  MathSciNet  Google Scholar 

  14. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010)

    Article  MathSciNet  Google Scholar 

  16. Dehghan, M., Mirzaei, D.: The boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation. Numer. Meth. Part. D. E. 24(6), 1405–1415 (2008)

    Article  MathSciNet  Google Scholar 

  17. Dehghan, M., Shokri, A.: A numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions. Numer. Meth. Part. D. E. 24(2), 687–698 (2008)

    Article  MathSciNet  Google Scholar 

  18. Deng, D.: Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method. Numerical Numer. Func. Anal. Opt. 40(9), 1053–1079 (2019)

    Article  MathSciNet  Google Scholar 

  19. Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)

    MathSciNet  Google Scholar 

  20. Deng, D., Wang, Q.: A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations. Commun. Nonlinear SCI. 117, 106916 (2023)

    Article  MathSciNet  Google Scholar 

  21. Deng, D., Chen, J., Wang, Q.: Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations. Numer. Algor. 93, 1045–1081 (2023)

    Article  MathSciNet  Google Scholar 

  22. Guo, B.-Y., Pedro, J.P., María, J.R., Luis, V.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18(1), 1–14 (1986)

    MathSciNet  Google Scholar 

  23. Hairer, E.: Important aspects of geometric numerical integration. J. Sci. Comput. 25, 67–81 (2005)

    Article  MathSciNet  Google Scholar 

  24. Hao, Z.-P., Sun, Z.-Z., Cao, W.: A three-level linearized compact difference scheme for the Ginzburg-Landau equation. Numer. Meth. Part. D. E. 31(3), 876–899 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hu, D., Kong, L., Cai, W., Wang, Y.: Fully decoupled, linear and energy-preserving GSAV difference schemes for the nonlocal coupled sine-Gordon equations in multiple dimensions. Numer. Algor. (2023). https://doi.org/10.1007/s11075-023-01634-6

    Article  Google Scholar 

  26. Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)

    Article  MathSciNet  Google Scholar 

  27. Jiang, C., Sun, J., Li, H., Wang, Y.: A fourth-order AVF method for the numerical integration of sine-Gordon equation. Appl. Math. Comput. 313, 144–158 (2017)

    MathSciNet  Google Scholar 

  28. Jiwari, R.: Barycentric rational interpolation and local radial basis functions based numerical algorithms for multidimensional sine-Gordon equation. Numer. Meth. Part. D. E. 37(3), 1965–1992 (2021)

    Article  MathSciNet  Google Scholar 

  29. Josephson, J.: Supercurrents through barriers. Adv. Phys. 14, 419–451 (1965)

    Article  Google Scholar 

  30. Johnson, S., Suarez, P., Biswas, A.: New exact solutions for the sine-Gordon equation in 2\(+\)1 dimensions. Comput. Math. Math. Phys. 52(1), 98–104 (2012)

    Article  MathSciNet  Google Scholar 

  31. Khaliq, A.Q.M., Abukhodair, B., Sheng, Q., Ismail, M.S.: A predictor-corrector scheme for the sine-Gordon equation. Numer. Meth. Part. D. E. 16(2), 133–146 (2000)

    Article  MathSciNet  Google Scholar 

  32. Kamranian, M., Dehghan, M., Tatari, M.: Study of the two-dimensional sine-Gordon equation arising in Josephson junctions using meshless finite point method. Int. J. Numer. Model EI. 30, 2210 (2017)

    Article  Google Scholar 

  33. Lai, H., Ma, C.: Numerical study of the nonlinear combined sine-Cosine-Gordon equation with the lattice Boltzmann method. J. Sci. Comput. 53, 569–585 (2012)

    Article  MathSciNet  Google Scholar 

  34. Leblond, H., Triki, H., Mihalache, D.: Derivation of a generalized double-sine-Gordon equation describing ultrashort-soliton propagation in optical media composed of multilevel atoms. Phys. Rev. A. 063825 (2012)

  35. Leibbrandt, G.: New exact solutions of the classical sine-Gordon equation in 2\(+\)1 and 3\(+\)1 dimensions. Phys. Rev. Lett. 41(7), 435–438 (1978)

    Article  Google Scholar 

  36. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  37. Li, D., Li, X., Zhang, Z.: Linearly implicit and high-order energy-preserving relaxation schemes for highly oscillatory Hamiltonian systems. J. Comput. Phys. 477, 111925 (2023)

    Article  MathSciNet  Google Scholar 

  38. Li, D., Li, X.: Relaxation exponential Rosenbrock-type methods for oscillatory Hamiltonian systems. SIAM J. Sci. Comput. 45(6), A2886–A2911 (2023)

    Article  MathSciNet  Google Scholar 

  39. Li, J., Sun, Z.-Z., Zhao, X.: A three level linearized compact difference scheme for the Cahn-Hilliard equation. Sci China Math 55(4), 805–826 (2012)

    Article  MathSciNet  Google Scholar 

  40. Liao, H.-L., Sun, Z.-Z.: Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235(8), 2217–2233 (2011)

    Article  MathSciNet  Google Scholar 

  41. Liu, W., Sun, J., Wu, B.: Space-time spectral method for the two-dimensional generalized sine-Gordon equation. J. Math. Anal. Appl. 427(2), 787–804 (2015)

    Article  MathSciNet  Google Scholar 

  42. Lu, J.: An analytical approach to the sine-Gordon equation using the modified homotopy perturbation method. Comput. Math. Appl. 58, 2313–2319 (2009)

    Article  MathSciNet  Google Scholar 

  43. Moghaderi, H., Dehghan, M.: A multigrid compact finite difference method for solving the one-dimensional nonlinear sine-Gordon equation. Math. Method Appl. Sci. 38, 3901–3922 (2015)

    Article  MathSciNet  Google Scholar 

  44. Mirzaei, D., Dehghan, M.: Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation. J. Comput. Appl. Math. 233, 2737–2754 (2010)

    Article  MathSciNet  Google Scholar 

  45. Mirzaee, F., Rezaei, S., Samadyar, N.: Numerical solution of two-dimensional stochastic time-fractional sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods. Eng. Anal. Bound. Elem. 127, 53–63 (2021)

    Article  MathSciNet  Google Scholar 

  46. Martin-Vergara, F., Rus, F., Villatoro, F.R.: Padé schemes with Richardson extrapolation for the sine-Gordon equation. Commun. Nonlinear. SCI 85, 105243 (2020)

    Article  MathSciNet  Google Scholar 

  47. Mustafa, A.: Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation. Appl. Math. Comput. 451, 128039 (2023)

    MathSciNet  Google Scholar 

  48. Najafi, M., Dehghan, M.: Simulations of dendritic solidification via the diffuse approximate method. Eng. Anal. Bound. Elem. 151, 639–655 (2023)

    Article  MathSciNet  Google Scholar 

  49. Nguyen, L.T.K., Smyth, N.F.: Modulation theory for radially symmetric kink waves governed by a multi-dimensional sine-Gordon equation. J. Nonlinear Sci. 33 (2023). https://doi.org/10.1007/s00332-022-09859-w

  50. Sari, M., Gürarslan, G.: A sixth-order compact finite difference method for the one-dimensional sine-Gordon equation. Int. J. Numer. Meth. Bio. 27(7), 1126–1138 (2009)

    Article  MathSciNet  Google Scholar 

  51. Shi, D., Pei, L.: Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput. 219(17), 9447–9460 (2013)

    MathSciNet  Google Scholar 

  52. Shi, D., Zhang, D.: Approximation of nonconforming quasi-Wilson element for sine-Gordon equations. J. Comput. Math. 31(3), 271–282 (2013)

    Article  MathSciNet  Google Scholar 

  53. Su, L.: Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of approximate particular solutions. Eng. Anal. Bound. Elem. 108, 95–107 (2019)

    Article  MathSciNet  Google Scholar 

  54. Sun, Z.-Z., Zhang, Q., Gao, G.-h.: Finite difference methods for nonlinear evolution equations. De Gruyter, Science Press, Beijing (2023)

  55. Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)

    Article  MathSciNet  Google Scholar 

  56. Wang, J.-Y., Huang, Q.-A.: A family of effective structure-preserving schemes with second-order accuracy for the undamped sine-Gordon equation. Comput. Math. Appl. 90, 38–45 (2021)

    Article  MathSciNet  Google Scholar 

  57. Wazwaz, A.-M.: The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. Math. Comput. 167(2), 1196–1210 (2005)

    MathSciNet  Google Scholar 

  58. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  MathSciNet  Google Scholar 

  59. Zhai, S., Feng, X., He, Y.: Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method. Comput. Phys. Commun. 185, 2449–2455 (2014)

    Article  Google Scholar 

  60. Zhai, S., Weng, Z., Gui, D., Feng, X.: High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion. Int. J. Heat Mass. Tran. 84, 440–447 (2015)

    Article  Google Scholar 

  61. Zhang, H., Xia, Y.: Persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation. Appl. Math. Lett. 141, 0893–9659 (2023)

    Article  MathSciNet  Google Scholar 

  62. Zhang, Q., Lin, X., Pan, K., Ren, Y.: Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation. Comput. Math. Appl. 80, 1201–1220 (2020)

    Article  MathSciNet  Google Scholar 

  63. Zhang, Q., Zhang, C., Wang, L.: The compact and Crank-Nicolson ADI schemes for two-dimensional semilinear multidelay parabolic equations. J. Comput. Appl. Math. 306, 217–230 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate anonymous reviewers for their helpful comments and valuable suggestions, which greatly improve the presentation of the original manuscript.

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ23A010007), the Fundamental Research Funds of Zhejiang Sci-Tech University (Grant No. 23062123-Y) and the National Natural Science Foundation of China (Grant Nos. 11771162, 12231003).

Author information

Authors and Affiliations

Authors

Contributions

The original idea, algorithm development and its theoretical analysis and numerical experiments of this manuscript are attributed to all authors.

Corresponding author

Correspondence to Qifeng Zhang.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Detailed proofs of lemmas and remarks

Appendix. Detailed proofs of lemmas and remarks

In this appendix, we will give the detailed proofs for the lemmas and remarks presented in Sects. 2 and 4.2.

  1. (I).

    Proof of Lemma 2.5.

Proof

According to the inverse estimate in Lemmas 2.22.4, it is straightforward to show that

$$\begin{aligned}&\;\Vert (\alpha \mathcal {A}_y\delta _x^2+\beta \mathcal {A}_x\delta _y^2)u\Vert ^2\\ =&\;\alpha ^2\Vert \mathcal {A}_y\delta _x^2u\Vert ^2+\beta ^2\Vert \mathcal {A}_x\delta _y^2u\Vert ^2 +2\alpha \beta (\mathcal {A}_y\delta _x^2u,\mathcal {A}_x\delta _y^2u)\\ =&\;\alpha ^2\Vert \delta _x^2u\Vert ^2+\beta ^2\Vert \delta _y^2u\Vert ^2+2\alpha \beta \Big [(\delta _x^2u,\delta _y^2u) \\&\;+\frac{h_2^2}{12}(\delta _y^2u,\delta _x^2\delta _y^2u) +\frac{h_1^2}{12}(\delta _x^2u,\delta _x^2\delta _y^2u)+\frac{h_1^2h_2^2}{12^2}\Vert \delta _x^2\delta _y^2u\Vert ^2\Big ]\\ \leqslant&\;\alpha ^2\Vert \delta _x^2u\Vert ^2+\beta ^2\Vert \delta _y^2u\Vert ^2 +2\alpha \beta \Vert \delta _x\delta _yu\Vert ^2\\ \leqslant&\; ( M_{\alpha \beta })^2\cdot \Vert \varDelta _hu\Vert ^2, \end{aligned}$$

which completes the proof.

  1. (II).

    Proof of Lemma 2.6.

Proof

On one hand, using Lemmas 2.22.3, we can get from Lemma 3.4 in [24]

$$\begin{aligned}&\;(\mathcal {A}_x\mathcal {A}_yu,-\varDelta _h u)\\ =&\;|u|_1^2-\frac{h_1^2}{12}(\Vert \delta _x^2u\Vert ^2+\Vert \delta _y\delta _xu\Vert ^2) -\frac{h_2^2}{12}(\Vert \delta _y^2u\Vert ^2+\Vert \delta _y\delta _xu\Vert ^2)\\&\;\quad +\frac{h_1^2h_2^2}{12^2}(\Vert \delta _y\delta _x^2u\Vert ^2+\Vert \delta ^2_y\delta _xu\Vert ^2)\\ \leqslant&\; |u|_1^2-\frac{h_1^2}{18}(\Vert \delta _x^2u\Vert ^2+\Vert \delta _y\delta _xu\Vert ^2) -\frac{h_2^2}{12}(\Vert \delta _y^2u\Vert ^2+\Vert \delta _y\delta _xu\Vert ^2) \leqslant |u|_1^2, \end{aligned}$$

which completes the proof of the right-hand side of the first inequality. On the other hand, it follows from Lemma 3.5 in [24] that

$$\begin{aligned} \Vert u\Vert _{\alpha \beta }^2&\;=((\alpha \delta _x^2+\beta \delta _y^2)u,(\delta _x^2+\delta _y^2)u)+ \frac{\alpha h_2^2+\beta h_1^2}{12}(\delta _x^2\delta _y^2u,(\delta _x^2+\delta _y^2)u)\\&\;=\alpha \Vert \delta _x^2u\Vert ^2+\beta \Vert \delta _y^2u\Vert ^2+(\alpha +\beta )\Vert \delta _x\delta _yu\Vert ^2 -\frac{\alpha h_2^2+\beta h_1^2}{12}(\Vert \delta _y\delta _x^2u\Vert ^2+\Vert \delta _x\delta _y^2u\Vert ^2)\\&\;\geqslant \frac{2}{3}(\alpha \Vert \delta _x^2u\Vert ^2+\beta \Vert \delta _y^2u\Vert ^2+(\alpha +\beta )\Vert \delta _x\delta _yu\Vert ^2) \geqslant \frac{2}{3} m_{\alpha \beta }\cdot \Vert \varDelta _hu\Vert ^2. \end{aligned}$$

According to the above inequality, it is easy to prove the right-hand side of the second inequality, and in a word, the proof of the second inequality is completed.

  1. (III).

    Proof of Lemma 2.11.

Proof

We first of all consider by Lemma 2.3

$$\begin{aligned}&\;(\mathcal {A}_x\mathcal {A}_y\delta _t^2u^k,-\delta _x^2 \varDelta _tu^k)\\ =&\;\frac{1}{2\tau } \Big (\mathcal {A}_x\mathcal {A}_y(\delta _t u^{k+\frac{1}{2}}-\delta _t u^{k-\frac{1}{2}}), -\delta _x^2(\delta _t u^{k+\frac{1}{2}}+\delta _t u^{k-\frac{1}{2}})\Big )\\ =&\;\frac{1}{2\tau }\Big [(\mathcal {A}_x\mathcal {A}_y\delta _t u^{k+\frac{1}{2}}, -\delta _x^2\delta _t u^{k+\frac{1}{2}})-(\mathcal {A}_x\mathcal {A}_y\delta _t u^{k-\frac{1}{2}}, -\delta _x^2\delta _t u^{k-\frac{1}{2}})\Big ]\\&\;+\frac{1}{2\tau }\Big [ \Big (\big (\mathcal {I}+\frac{h_1^2}{12}\delta _x^2+\frac{h_2^2}{12}\delta _y^2 +\frac{h_1^2h_2^2}{12^2}\delta _x^2\delta _y^2\big )\delta _t u^{k+\frac{1}{2}},-\delta _x^2\delta _t u^{k-\frac{1}{2}}\Big )\\&\;-\Big (\big (\mathcal {I}+\frac{h_1^2}{12}\delta _x^2+\frac{h_2^2}{12}\delta _y^2 +\frac{h_1^2h_2^2}{12^2}\delta _x^2\delta _y^2\big )\delta _t u^{k-\frac{1}{2}},-\delta _x^2\delta _t u^{k+\frac{1}{2}}\Big )\Big ]\\ =&\;\frac{1}{2\tau }\Big [ (\mathcal {A}_x\mathcal {A}_y\delta _t u^{k+\frac{1}{2}}, -\delta _x^2\delta _t u^{k+\frac{1}{2}})-(\mathcal {A}_x\mathcal {A}_y\delta _t u^{k-\frac{1}{2}}, -\delta _x^2\delta _t u^{k-\frac{1}{2}})\Big ],\quad k\in \mathcal {T}_{N}. \end{aligned}$$

By analogy with the definition of \(\varDelta _h\), the proof is completed.

  1. (IV).

    Proof of Lemma 2.12.

Proof

Making use of Lemmas 2.1, 2.3 and 2.7, we see for \(k\in \mathcal {T}_{N}\) that

$$\begin{aligned}&\;-\big (\varTheta (\alpha \mathcal {A}_y\delta _x^2+\beta \mathcal {A}_x\delta _y^2)u^{k},-\varDelta _h\varDelta _tu^{k}\big )\\ =&\;\theta \big ((\alpha \mathcal {A}_y\delta _x^2+\beta \mathcal {A}_x\delta _y^2)(u^{k+1}+u^{k-1}),-\varDelta _h\varDelta _tu^{k}\big ) \\&\;+(1-2\theta ) \big ((\alpha \mathcal {A}_y\delta _x^2+\beta \mathcal {A}_x\delta _y^2)u^{k},-\varDelta _h\varDelta _tu^{k}\big )\\\ =&\;-\frac{\theta }{2\tau }\Big [\Vert u^{k+1}\Vert _{\alpha \beta }^2-\Vert u^{k-1}\Vert _{\alpha \beta }^2+(u^{k+1},u^{k-1})_{\alpha \beta }-(u^{k-1},u^{k+1})_{\alpha \beta }\Big ] \\&\;-\frac{1-2\theta }{2\tau }\Big [(u^{k},u^{k+1})_{\alpha \beta }+(u^{k},u^{k-1})_{\alpha \beta }\Big ]\\ =&-\frac{\theta }{2\tau }\Big (\Vert u^{k+1}\Vert _{\alpha \beta }^2-\Vert u^{k-1}\Vert _{\alpha \beta }^2\Big ) -\frac{1-2\theta }{2\tau }\Big [(\Vert u^{k+1}\Vert _{\alpha \beta }^2-\Vert u^{k+1}-u^k\Vert _{\alpha \beta }^2) \\&-(\Vert u^{k-1}\Vert _{\alpha \beta }^2-\Vert u^{k-1}-u^k\Vert _{\alpha \beta }^2)\Big ]\\ =&\;\frac{1}{2\tau }\Big [\frac{1}{2}(\Vert u^{k+1}\Vert _{\alpha \beta }^2+\Vert u^{k}\Vert _{\alpha \beta }^2) -\frac{1}{2}(\Vert u^{k}\Vert _{\alpha \beta }^2+\Vert u^{k-1}\Vert _{\alpha \beta }^2) \\&\;+\frac{2\theta -1}{2}(\Vert u^{k+1}-u^{k}\Vert _{\alpha \beta }^2-\Vert u^{k-1}-u^{k}\Vert _{\alpha \beta }^2) \Big ]. \end{aligned}$$

The lemma is proved.

  1. (V).

    Proof of Lemma 2.13.

Proof

Making use of Lemma 2.3, we see that

$$\begin{aligned}&\;(\alpha \beta \theta ^2\tau ^4\delta _x^2\delta _y^2\delta _t^2u^{k},-\varDelta _h\varDelta _tu^{k})\\ =&\;\frac{1}{2\tau } \alpha \beta \theta ^2\tau ^4\big (\delta _x^2\delta _y^2(\delta _tu^{k+\frac{1}{2}}-\delta _tu^{k-\frac{1}{2}}), -\varDelta _h(\delta _tu^{k+\frac{1}{2}}+\delta _tu^{k-\frac{1}{2}})\big )\\ =&\;\frac{1}{2\tau } \alpha \beta \theta ^2\tau ^4\Big [(\Vert \delta _y\delta ^2_x\delta _tu^{k+\frac{1}{2}}\Vert ^2+\Vert \delta ^2_y\delta _x\delta _tu^{k+\frac{1}{2}}\Vert ^2) -( \Vert \delta _y\delta ^2_x\delta _tu^{k-\frac{1}{2}}\Vert ^2+\Vert \delta ^2_y\delta _x\delta _tu^{k-\frac{1}{2}}\Vert ^2)\\&\;-(\delta _x^2\delta ^2_y\delta _tu^{k+\frac{1}{2}},\delta _x^2\delta _tu^{k-\frac{1}{2}}) -(\delta _x^2\delta ^2_y\delta _tu^{k+\frac{1}{2}},\delta _y^2\delta _tu^{k-\frac{1}{2}})\\&\;+(\delta _x^2\delta ^2_y\delta _tu^{k-\frac{1}{2}},\delta _x^2\delta _tu^{k+\frac{1}{2}}) +(\delta _x^2\delta ^2_y\delta _tu^{k-\frac{1}{2}},\delta _y^2\delta _tu^{k+\frac{1}{2}})\Big ]\\ =&\;\frac{1}{2\tau }\alpha \beta \theta ^2\tau ^4 (|\delta _y\delta _x\delta _tu^{k+\frac{1}{2}}|_1^2 - |\delta _y\delta _x\delta _tu^{k-\frac{1}{2}}|_1^2),\quad k\in \mathcal {T}_{N}, \end{aligned}$$

which is exactly Lemma 2.13.

  1. (VI).

    Proof of Remark 4.1.

Proof

When \(\theta \in \big [0,\frac{1}{4}\big ]\), the conclusion is same to (2.3). When \(\theta \in \big (\frac{1}{4},1\big ]\), applying Lemma 2.6 we have

$$\begin{aligned} \mathcal {V}^{k+1}\geqslant&\; \frac{1}{2}(\Vert v^{k+1}\Vert _{\alpha \beta }^2+\Vert v^{k}\Vert _{\alpha \beta }^2)+ ({2\theta -1})(\Vert v^{k+1}\Vert _{\alpha \beta }^2+\Vert v^{k}\Vert _{\alpha \beta }^2)+\frac{1}{6}|\delta _tv^{k+\frac{1}{2}}|_1^2\\ \geqslant&\; \frac{4\theta -1}{2}(\Vert v^{k+1}\Vert _{\alpha \beta }^2+\Vert v^{k}\Vert _{\alpha \beta }^2)\\ \geqslant&\; \frac{4\theta -1}{3} m_{\alpha \beta }(\Vert \varDelta _hv^{k+1}\Vert ^2+\Vert \varDelta _hv^{k}\Vert ^2). \end{aligned}$$

It follows from the above inequality that

$$\begin{aligned} \Vert \varDelta _hv^{k+1}\Vert ^2+\Vert \varDelta _hv^{k}\Vert ^2\leqslant \frac{3}{(4\theta -1) m_{\alpha \beta }} \mathcal {V}^{k+1},\quad k\in \mathcal {T}_{N}\cup \{0\}. \end{aligned}$$
(7.1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, D. & Mao, W. A family of linearly weighted-\(\theta \) compact ADI schemes for sine-Gordon equations in high dimensions. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01816-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01816-w

Keywords

Mathematics Subject Classification (2010)

Navigation