Skip to main content
Log in

A Superconvergent \(C^0\) Discontinuous Galerkin Method for Kirchhoff Plates: Error Estimates, Hybridization and Postprocessing

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to a superconvergent \(C^0\) discontinuous Galerkin (SCDG) method for Kirchhoff plates. First of all, following the ideas in Huang et al. (Comput Methods Appl Mech Eng 199(23–24):1446–1454, 2010) but with the normal bending moment and twisting moment as new numerical traces, we propose a modified framework of CDG methods for Kirchhoff plates. Then by a technical choice of the numerical traces, we obtain our SCDG method. Observing that the famous Hellan–Herrmann–Johnson (HHJ) method is a special case of the SCDG method, we are motivated to borrow some techniques for analyzing the HHJ method to derive optimal and superconvergent error estimates for the SCDG method. Under some assumption on the stabilization parameters, we consider the hybridization of the SCDG method. Furthermore, we construct a superconvergent discrete deflection by postprocessing the solution of the method using similar technique in Stenberg (RAIRO Modél Math Anal Numér 25(1):151–167, 1991). Some numerical results are performed to demonstrate the theoretical results for the SCDG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, R., Huang, X.: A compact \(C^0\) discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differ. Equ. 31(4), 1265–1287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1), 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35(152), 1039–1062 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Zlámal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49(2), 789–817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  7. Brenner, S.C., Sung, L.-Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  11. Cockburn, B.: Discontinuous Galerkin methods. ZAMM Z. Angew. Math. Mech. 83(11), 731–754 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40(1–3), 141–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78(265), 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  17. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Comodi, M.I.: The Hellan–Herrmann–Johnson method: some new error estimates and postprocessing. Math. Comput. 52(185), 17–29 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  20. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  21. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191(34), 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numér. 14(3), 249–277 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Feng, K., Shi, Z.-C.: Mathematical Theory of Elastic Structures. Springer, Berlin (1996)

    Google Scholar 

  24. Feng, X., Karakashian, O., Xing, Y.: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  25. Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29(3), 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

    MATH  Google Scholar 

  27. Gudi, T., Gupta, H.S., Nataraj, N.: Analysis of an interior penalty method for fourth order problems on polygonal domains. J. Sci. Comput. 54(1), 177–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37(2), 139–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hellan, K.: Analysis of Elastic Plates in Flexure by a Simplified Finite Element Method. Acta polytechnica scandinavica-civil engineering and building construction series. Norges Tekniske Vitenskapsakademi, Trondheim (1967)

    MATH  Google Scholar 

  31. Herrmann, K.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 49–83 (1967)

    Google Scholar 

  32. Huang, J., Huang, X., Han, W.: A new \(C^0\) discontinuous Galerkin method for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 199(23–24), 1446–1454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang, J., Huang, X., Xu, Y.: Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal. 49(2), 574–607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang, X., Huang, J.: Error analysis of a \(C^0\) discontinuous Galerkin method for Kirchhoff plates. J. Comput. Anal. Appl. 15(1), 118–132 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Huang, X., Huang, J.: A reduced local \(C^0\) discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differ. Equ. 30(6), 1902–1930 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43–62 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Karakoc, S.B.G., Neilan, M.: A \(C^0\) finite element method for the biharmonic problem without extrinsic penalization. Numer. Methods Partial Differ. Equ. 30(4), 1254–1278 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mozolevski, I., Bösing, P.R.: Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems. Comput. Methods Appl. Math. 7(4), 365–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mozolevski, I., Süli, E., Bösing, P.R.: \(hp\)-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30(3), 465–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2006)

    Google Scholar 

  42. Scapolla, T.: A mixed finite element method for the biharmonic problem. RAIRO Anal. Numér. 14(1), 55–79 (1980)

    MathSciNet  MATH  Google Scholar 

  43. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151–167 (1991)

    MathSciNet  MATH  Google Scholar 

  44. Süli, E., Mozolevski, I.: \(hp\)-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196(13–16), 1851–1863 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wells, G.N., Dung, N.T.: A \(C^0\) discontinuous Galerkin formulation for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 196(35–36), 3370–3380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their valuable and insightful comments and suggestions, which greatly improved the early version of the paper. The work of the first author was partly supported by NSFC (Grant Nos. 11301396, 11171257) and Zhejiang Provincial Natural Science Foundation of China (LY14A010020, LY15A010015 and LY15A010016). The work of the second author was partly supported by NSFC (Grant Nos. 11171219, 11571237) and E-Institutes of Shanghai Municipal Education Commission (E03004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Huang, J. A Superconvergent \(C^0\) Discontinuous Galerkin Method for Kirchhoff Plates: Error Estimates, Hybridization and Postprocessing. J Sci Comput 69, 1251–1278 (2016). https://doi.org/10.1007/s10915-016-0232-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0232-7

Keywords

Navigation