Skip to main content
Log in

Numerical Solution of Multidimensional Hyperbolic PDEs Using Defect Correction on Adaptive Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a novel computational approach to obtain high order accurate, finite difference based numerical solutions of hyperbolic partial differential equations, through a combination of grid adaptation, non-iterative defect correction and monotonicity preserving interpolation methods. Reduction of local truncation error is achieved primarily due to a particular choice of an adaptive, non-uniform grid where the local Courant–Friedrich–Levy number is unity, along with non-iterative defect correction. A monotonicity preserving interpolant is further used to map the dependent variables from the non-uniform to uniform grids and vice versa. Dimensional splitting techniques are used to extend the range of application of this method from single to multiple dimensions. Using the monotonicity preserving feature of this interpolant, finite difference schemes with high order of accuracy are developed for solving multidimensional, hyperbolic PDEs. In this work, for the proof of concept, five canonical problems including Liouville equations (in one and two dimensions) with spatially dependent drift coefficients and one-dimensional Burgers equation as well as a two-dimensional nonlinear hyperbolic equation are solved. The results demonstrate four major features of the proposed methodology including: (1) the capability to improve the order of accuracy of difference schemes up to any desired level, (2) the ability to obtain the given level of accuracy at a lower computational cost (or time) when compared to some widely used standard finite difference schemes (3) accurate oscillation-free resolution of discontinuities and (4) the computational simplicity for application to multidimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alves, M.A., Oliveira, P.J., Pinho, F.T.: A convergent and universally bounded interpolation scheme for the treatment of advection. Int. J. Numer. Meth. Fluids 41(1), 47–75 (2003)

    Article  MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)

    Article  MATH  Google Scholar 

  3. Bagrinovski, K.A., Godunov, S.K.: Difference schemes for multidimensional problems. Dokl Akad Nauk SSSR (NS) 115, 431–1433 (1957)

    MathSciNet  MATH  Google Scholar 

  4. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142(2), 313–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boileau, M., Chalons, C., Massot, M.: Robust numerical coupling of pressure and pressureless gas dynamics equations for Eulerian spray DNS and LES. SIAM J. Sci. Comput. 37(1), B79–B102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryan, G.L., Norman, M.L., O’Shea, B.W., Abel, T., Wise, J.H., Turk, M.J., Reynolds, D.R., Collins, D.C., Wang, P., Skillman, S.W., et al.: ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211(2), 19 (2014)

    Article  Google Scholar 

  8. Carey, G.F., Dinh, H.T.: Grading functions and mesh redistribution. SIAM J. Numer. Anal. 22(5), 1028–1040 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, S.: A critical analysis of the modified equation technique of Warming and Hyett. J. Comput. Phys. 86(1), 107–126 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chu, K.T.: Boosting the accuracy of finite difference schemes via optimal time step selection and non-iterative defect correction. Appl. Math. Comput. 218(7), 3596–3614 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, M., Majda, A.: The method of fractional steps for conservation laws. Numer. Math. 34(3), 285–314 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Boor, C., Swartz, B.: Piecewise monotone interpolation. J. Approx. Theory 21(4), 411–416 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Denny, V.E., Landis, R.B.: A new method for solving two-point boundary-value problems using optimal node distribution. J. Comput. Phys. 9, 120–137 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dougherty, R.L., Edelman, A.S., Hyman, J.M.: Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Math. Comput. 52(186), 471–494 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumbser, M., Iben, U., Munz, C.: Efficient implementation of high order unstructured WENO schemes for cavitating flows. Comput. Fluids 86, 141–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dwyer, H.A.: Grid adaptation for problems in fluid dynamics. AIAA J. 22, 1705–1712 (1984)

    Article  MATH  Google Scholar 

  18. Eiseman, P.R.: Adaptive grid generation. Comput. Methods Appl. Mech. Eng. 64(1), 321–376 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Engquist, B., Sjögreen, B.: The convergence rate of finite difference schemes in the presence of shocks. SIAM J. Numer. Anal. 35(6), 2464–2485 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fedkiw R., Stam J., Jensen H.W.: Visual simulation of smoke. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM, pp. 15–22 (2001)

  21. Ferreira, V.G., Kurokawa, F.A., Queiroz, R.A.B., Kaibara, M.K., Oishi, C.M., Cuminato, J.A., Castelo, A., Tomé, M.F., McKee, S.: Assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems. Int. J. Numer. Meth. Fluids 60(1), 1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferreira, V.G., De Queiroz, R.A.B., Lima, G.A.B., Cuenca, R.G., Oishi, C.M., Azevedo, J.L.F., McKee, S.: A bounded upwinding scheme for computing convection-dominated transport problems. Comput. Fluids 57, 208–224 (2012)

    Article  MathSciNet  Google Scholar 

  23. Gerald, C .F., Wheatley, P .O.: Applied Numerical Analysis. Addison-Wesley, Boston (2004)

    MATH  Google Scholar 

  24. Gropp, W.D.: A test of moving mesh refinement for 2-d scalar hyperbolic problems. SIAM J. Sci. Stat. Comput. 1(2), 191–197 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guinot, V.: Wave Propagation in Fluids: Models and Numerical Techniques. Wiley, Hoboken, New Jersey, USA (2010)

    Book  MATH  Google Scholar 

  26. Gustafsson, B., Hemmingsson-Frändén, L.: Deferred correction in space and time. J. Sci. Comput. 17(1–4), 541–550 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ha, C., Park, W., Jung, C.: Numerical simulations of compressible flows using multi-fluid models. Int. J. Multiph. Flow 74, 5–18 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ha, Y., Lee, Y.J., Yoon, J.: Modified essentially nonoscillatory schemes based on exponential polynomial interpolation for hyperbolic conservation laws. SIAM J. Numer. Anal. 51(2), 864–893 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, New York (2006)

    MATH  Google Scholar 

  30. Harlander, U., Maas, L.R.: Two alternatives for solving hyperbolic boundary value problems of geophysical fluid dynamics. J. Fluid Mech. 588, 331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hirt, C.W.: Heuristic stability theory for finite-difference equations. J. Comput. Phys. 2(4), 339–355 (1968)

    Article  MATH  Google Scholar 

  34. Hoffman, J.D.: Numerical Methods for Engineers and Scientists. McGraw-Hill, New York (1992)

    MATH  Google Scholar 

  35. Holden, H., Karlsen, K.H., Lie, K., Risebro, N.H.: Splitting Methods for Partial Differential Equations with Rough Solutions. European Mathematical Society, Zurich (2010)

    Book  MATH  Google Scholar 

  36. Hyman, J.M.: Accurate monotonicity preserving cubic interpolation. SIAM J. Sci. Comput. 4, 645–654 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiang, G., Shu, C.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kahan, W., Li, R.: Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math. Comput. Am. Math. Soc. 66(219), 1089–1099 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Khodier, A.M.M., Hassan, A.Y.: One-dimensional adaptive grid generation. Int. J. Math. Math. Sci. 20(3), 577–584 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Klein, R., Bates, K.R., Nikiforakis, N.: Well-balanced compressible cut-cell simulation of atmospheric flow. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1907), 4559–4575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Klopfer, G. H., McRae, D. S.: The nonlinear modified equation approach to analyzing finite difference scheme. Paper no. 81–1029, AIAA (1981)

  42. Klopfer, G.H., McRae, D.S.: Nonlinear truncation error analysis of finite difference scheme for the Euler equation. AIAA J. 21(4), 487–494 (1983)

    Article  MATH  Google Scholar 

  43. Kress, W.: Error estimates for deferred correction methods in time. Appl. Numer. Math. 57(3), 335–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lee, J., Fornberg, B.: A split step approach for the 3-d Maxwell’s equations. J. Comput. Appl. Math. 158(2), 485–505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979)

    Article  MATH  Google Scholar 

  46. Li, Z., Peng, A., Zhang, H., Yang, J.: Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations. Prog. Aerosp. Sci. 74, 81–113 (2015)

    Article  Google Scholar 

  47. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Marquina, A.: Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15(4), 892–915 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numerica 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mino, Y., Kagawa, Y., Ishigami, T., Matsuyama, H.: Numerical simulation of coalescence phenomena of oil-in-water emulsions permeating through straight membrane pore. Colloids Surf. A 491, 70–77 (2016)

    Article  Google Scholar 

  51. Pierson, B., Kutler, P.: Optimal nodal point distribution for improved accuracy in computational fluid dynamics. AIAA J. 18, 49–54 (1980)

    Article  Google Scholar 

  52. Razi, M., Attar, P.J., Vedula, P.: Adaptive finite difference solutions of Liouville equations in computational uncertainty quantification. Reliab. Eng. Syst. Saf. 142, 267–278 (2015a)

    Article  Google Scholar 

  53. Razi, M., Attar, P.J., Vedula, P.: Grid adaptation and non-iterative defect correction for improved accuracy of numerical solutions of PDEs. Appl. Math. Comput. 269C, 473–487 (2015b)

    MathSciNet  Google Scholar 

  54. Richards, S.A.: Completed Richardson extrapolation in space and time. Commun. Numer. Methods Eng. 13(7), 573–582 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rogerson, A.M., Meiburg, E.: A numerical study of the convergence properties of ENO schemes. J. Sci. Comput. 5(2), 151–167 (1990)

    Article  MATH  Google Scholar 

  56. Shu, C.: Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comput. 5(2), 127–149 (1990)

    Article  MATH  Google Scholar 

  57. Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Springer, New York (1998)

    Book  MATH  Google Scholar 

  58. Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shyy, W., Garbey, M., Appukuttan, A., Wu, J.: Evaluation of Richardson extrapolation in computational fluid dynamics. Numer. Heat Transf.: Part B: Fundam. 41(2), 139–164 (2002)

    Article  Google Scholar 

  61. Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  62. Skeel, R.D.: A theoretical framework for proving accuracy results for deferred corrections. SIAM J. Numer. Anal. 19(1), 171–196 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  63. Spotz, W.F., Carey, G.F.: High-order compact finite difference methods. In: Preliminary proceedings international conference on spectral and high order methods, Houston (1995)

  64. Spotz, W.F., Carey, G.F.: Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial Differ. Equ. 17(6), 657–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. Stockie, J.M., Mackenzie, J.A., Russell, R.D.: A moving mesh method for one-dimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 22, 1791–1813 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  66. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  67. Su, X.: Accurate and robust adaptive mesh refinement for aerodynamic simulation with multi-block structured curvilinear mesh. Int. J. Numer. Meth. Fluids 77(12), 747–766 (2015)

    Article  MathSciNet  Google Scholar 

  68. Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S., Matsumoto, Y.: Full Eulerian simulations of biconcave neo-hookean particles in a Poiseuille flow. Comput. Mech. 46(1), 147–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Tannehill, J .C., Anderson, D .D .A., Pletcher, H.R.: Computational Fluid Mechanics and Heat Transfer. Taylor & Francis, Boston (1997)

    MATH  Google Scholar 

  70. Toro, E .F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, New York (2009)

    Book  MATH  Google Scholar 

  71. Velechovskỳ, J., Liska, R., Shashkov, M.: High-order remapping with piece-wise parabolic reconstruction. Comput. Fluids 83, 164–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Villatoro, F.R., Ramos, J.I.: On the method of modified equations. I: Asymptotic analysis of the Euler forward difference method. Appl. Math. Comput. 103(2), 111–139 (1999)

    MathSciNet  MATH  Google Scholar 

  73. Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14(2), 159–179 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  74. Wegner, J.L., Jiang, L., Haddow, J.B.: Application of a second-order Godunov-type finite difference scheme to a nonlinear elastodynamic problem. Comput. Mech. 8(6), 355–363 (1991)

    Article  MATH  Google Scholar 

  75. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, New York (2009)

    MATH  Google Scholar 

  76. White, A.B.: On selection of equidistributing meshes for two-point boundary problems. SIAM J. Numer. Anal. 16, 472–502 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yamaleev N.K.: Minimization of the truncation error by grid adaptation. Report no. 99–461999, ICASE (1999)

  78. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5), 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This material is based on research sponsored by OAI and the Air Force Research Laboratory under Agreement Number FA 8650-11-2-3112. The U.S. 21 Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation therein. The authors would also like to acknowledge the support provided though subcontract with Advanced Dynamics, Inc. (flow-through from NASA) and NSF Award Numbers CMMI-1301093 and CBET-1337000 . Finally, the authors would like to acknowledge the University of Oklahoma Supercomputing Center (OSCER) which provided supercomputing time to the authors enabling them in the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Razi.

Appendix: Defect Correction for the MacCormack Scheme

Appendix: Defect Correction for the MacCormack Scheme

The Truncation error analysis of the MacCormack equation (Eq. 20) using the method of modified equation [73] followed by a heuristic numerical stability analysis [33] gives \(D_i\Delta t-\Delta x_{i-\frac{1}{2}}=0\) as the characteristic equation for the singular perturbations to the modified differential equation. Therefore in order to obtain the expression for non-iterative defect correction (DC), the spatial increments \(\Delta x_{i-\frac{1}{2}}\) and \(\Delta x_{i+\frac{1}{2}}\) should be considered spatially dependent variables. Using method of modified equation and after a considerable algebra, this expression is obtained as follows:

$$\begin{aligned} \text {DC}= & {} \frac{\Delta t}{2}\left( D_{i+1}-D_i\right) \left( \frac{\partial ^2(Du)}{\partial x^2}\right) _i+\Delta t^2\bigg (u_i\bigg (\frac{(D_i^{\prime })^3}{6} \nonumber \\&+\, \frac{1}{4}\left( \frac{dD}{dx}\right) _{i+1}\left( D\frac{d^2D}{dx^2}\right) _i+D_{i+1}\left( \frac{dD}{dx}\frac{d^2D}{dx^2}\right) _i\nonumber \\&-\, \frac{1}{12}\left( D\frac{dD}{dx}\frac{d^2D}{dx^2}\right) _i-\frac{1}{6}\left( D\right) _{i+1}^2\left( \frac{d^3D}{dx^3}\right) _{i}\nonumber \\&+\, \frac{1}{2}D_{i+1}\left( D\frac{d^3D}{dx^3}\right) _i+\frac{1}{3}\left( D^2\frac{d^3D}{dx^3}\right) _i\bigg ) \nonumber \\&+\, \frac{\partial u}{\partial x}\bigg (\frac{1}{2}\left( \frac{dD}{dx}\right) _{i+1}\left( D\frac{dD}{dx}\right) _i+\frac{3}{2}D_{i+1}\left( \frac{dD}{dx}\right) _i^2\nonumber \\&-\, \frac{1}{3}\left( D\left( \frac{dD}{dx}\right) ^2\right) _i-\frac{1}{2}D_{i+1}^2\left( \frac{d^2D}{dx^2}\right) _i+\frac{7}{4}D_{i+1}\left( D\frac{d^2D}{dx^2}\right) _i\nonumber \\&-\, \frac{5}{6}\left( D^2\frac{d^2D}{dx^2}\right) _i\bigg )+ \frac{\partial ^2 u}{\partial x^2}\bigg (\frac{1}{4}D_i^2\left( \frac{dD}{dx}\right) _{i+1}\nonumber \\&-\, \frac{1}{2}D_{i+1}^2\left( \frac{dD}{dx}\right) _{i}+\frac{9}{4}D_{i+1}\left( D\frac{dD}{dx}\right) _{i} \nonumber \\&-\, \frac{5}{4}\left( D^2\frac{dD}{dx}\right) _{i}\bigg )+\frac{\partial ^3 u}{\partial x^3}\bigg (-\frac{1}{6}D_i\left( D\right) _{i+1}^2+\frac{1}{2}D_{i+1}\left( D\right) _{i}-\frac{1}{3}D_i^3 \bigg ) \nonumber \\&+\, {\mathcal {O}}\left( \Delta x_{i-\frac{1}{2}}^3+\Delta x_{i+\frac{1}{2}}^3+\Delta t^3\right) . \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razi, M., Attar, P. & Vedula, P. Numerical Solution of Multidimensional Hyperbolic PDEs Using Defect Correction on Adaptive Grids. J Sci Comput 69, 581–609 (2016). https://doi.org/10.1007/s10915-016-0209-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0209-6

Keywords

Mathematics Subject Classification

Navigation