Skip to main content
Log in

Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work is devoted to the comparison of numerical schemes to approximate anisotropic diffusion problems arising in tokamak plasma physics. We focus on the spatial approximation by using finite volume method and on the time discretization. This latter point is delicate since the use of explicit integrators leads to a severe restriction on the time step. Then, implicit and semi-implicit schemes are coupled to finite volumes space discretization and are compared for some classical problems relevant for magnetically confined plasmas. It appears that the semi-implicit approaches (using ARK methods or directional splitting) turn out to be the most efficient on the numerical results, especially when nonlinear problems are studied on refined meshes, using high order methods in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis: a technical review. NMR Biomed. 15, 456–467 (2002)

    Article  Google Scholar 

  2. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002)

    Article  Google Scholar 

  3. Beyer, P., Benkadda, S., Fuhr, G., Garbet, X., Ghendrih, Ph, Sarazin, Y.: Nonlinear dynamics of transport barrier relaxations in tokamak edge plasmas. Phys. Rev. Lett. 94, 105001 (2005)

    Article  Google Scholar 

  4. Braginskii, S. I.: Transport Processes in a Plasma. In: Leontovich (ed.) Reviews of Plasma Physics, vol. 1. Consultants Bureau, New York (1965)

  5. Chacón, L., del-Castillo-Negrete, D., Hauck, C.D.: An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation. J. Comp. Phys

  6. Crouzeix, M.: An implicit-Explicit multistep method of the approximation of parabolic equations. Numer. Math. 35, 257–276 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Filbet, F., Jin, S.: A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. J. Comp. Phys. 229, 7625–7648 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Filbet, F., Negulescu, C., Yang, C.: Numerical study of a nonlinear heat equation for plasma physics. Int. J. Comput. Math. 89, 1060–1082 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fisher, P.F.: Anisotropic diffusion in a toroidal geometry. J. Phys. Conf. Ser. 16, 446–455 (2005)

    Article  Google Scholar 

  10. Fuhr, G., Beyer, P., Benkadda, S., Garbet, X.: Evidence from numerical simulations of transport-barrier relaxation in tokamak edge plasmas in the presence of electromagnetic fluctuations. Phys. Rev. Lett. 101, 195001 (2008)

    Article  Google Scholar 

  11. Gunter, S., Yu, Q., Kruger, J., Lackner, K.: Modelling of heat transport in magnetized plasmas using non-aligned coordinates. J. Comput. Phys. 209, 354–370 (2005)

    Article  Google Scholar 

  12. Gunter, S., Lackner, K., Tichmann, C.: Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas. J. Comput. Phys. 226, 2306–2316 (2007)

    Article  Google Scholar 

  13. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lemou, M., Mieussens, L.: Implicit schemes for the Fokker-Planck-Landau equation. SIAM J. Sci. Comp. 27, 809–830 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, H., Zou, J.: Some new additive Runge Kutta methods and their applications. J. Comput. Appl. Math. 190, 74–98 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lozinski, A., Narski, J., Negulescu, C.: Highly anisotropic temperature balance equation and its asymptotic-preserving resolution, to appear in M2AN (Mathematical Modelling and Numerical Analysis)

  17. Lubich, Ch., Ostermann, A.: Linearly implicit time discretization of nonlinear parabolic equations. IMA J. Numer. Math. 15, 555–583 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. McCorquodale, P., Colella, P.: A high-order finite-volume method for conservation laws on locally refined grids. Comm. Appl. Math. Comp. Sci. 6, 1–25 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mentrelli, A., Negulescu, C.: Asymptotic-Preserving scheme for highly anisotropic non-linear diffusion equations. J. Comp. Phys. 231, 8229–8245 (2012)

    Article  MathSciNet  Google Scholar 

  20. Narski, J., Ottaviani, M.: Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction. Comput. Phys. Commun. 185, 3189–3203 (2014)

  21. Nordbotten, I., Aavatsmark, I., Eigestad, G.T.: Monotonicity of control volume methods. Numer. Math. 106, 255–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  23. Sharma, P., Hammett, G.W.: Preserving monotonicity in anisotropic diffusion. J. Comput. Phys. 227, 123–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sharma, P., Hammett, G.W.: A fast semi-implicit method for anisotropic diffusion. J. Comp. Phys. 230, 4899–4913 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tamain, P., Ghendrih, Ph, Tristone, E., Grandgirard, V., Garbet, X., Sarazin, Y., Serre, E., Ciraolo, G., Chiavassa, G.: TOKAM-3D: a 3D fluid code for transport and turbulence in the edge plasma of tokamaks. J. Comput. Phys. 229, 361–378 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. van Es, B., Koren, B., de Blank, H. J.: Finite-difference schemes for anisotropic diffusion. J. Comput. Phys

  27. Zhang, Q., Johansen, H., Colella, P.: A fourth-order accurate finite-volume method with structured adaptive mesh refinement for solving the advection-diffusion equation. SIAM J. Sci. Comput. 34, 179–201 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the ANR (National Research Agency, project reference: ANR-10-BLAN-0940) for financial supporting and the use of the Mésocentre d’Aix-Marseille Université Computing Facility, and associated support services. We also aknowledge Patrick Tamain from CEA Cadarache for his constructive help and advices on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Kuhn.

Appendix

Appendix

1.1 Relations for Spatial Discretization

In this part, we recall some relations useful for the derivation of the numerical scheme. We consider one dimensional functions \(f:=f(x)\) and \(h:=h(x)\) and two-dimensional function \(g:=g(x,y)\). A uniform one dimensional generic mesh is used: \(z_{k+1/2}=z_{k-1/2}+\varDelta z\), for \(k\in {{\mathbb {Z}}}\). We denote by \(f_k\) the cell averaged quantity

$$\begin{aligned} f_k = \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} f(z) dz. \end{aligned}$$

We recall the notations introduced above \(C_i^x=[x_{i-1/2}, x_{i+1/2}]\) and \(C_j^y=[y_{j-1/2}, y_{j+1/2}]\), with \(\varDelta x\) and \(\varDelta y\) the mesh size in the directions x and y so that the cell averaged writes

$$\begin{aligned} g_{i,j} = \frac{1}{\varDelta x\varDelta y}\int _{C_i^x}\int _{C_j^y} g(x, y) dxdy. \end{aligned}$$

The first one enables to express the product of the integral of two functions as a product of the integral of the function.

Proposition 7.1

Let us consider \(I=\int _{z_{k-1/2}}^{z_{k+1/2}} f(z) h(z) dz\). A second order approximation of \(I\) gives

$$\begin{aligned} \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} f(z) h(z) dz = \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} f(z) dz \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} h(z) dz+ \mathcal{O}(\varDelta z^2) \end{aligned}$$

whereas a fourth order approximation of \(I\) gives

$$\begin{aligned} \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} f(z) h(z) dz&= \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} f(z) dz \frac{1}{\varDelta z}\int _{z_{k-1/2}}^{z_{k+1/2}} h(z) dz\\&\quad +\, \frac{1}{48\varDelta z^2 }\left( \int _{z_{k+1/2}}^{z_{k+3/2}} f(z) dz \right. \\&\left. \quad -\, \int _{z_{k-3/2}}^{z_{k-1/2}} f(z) dz \right) \left( \int _{z_{k+1/2}}^{z_{k+3/2}} h(z) dz - \int _{z_{k-3/2}}^{z_{k-1/2}} h(z) dz \right) \\&\quad +\, \mathcal{O}(\varDelta z^4). \end{aligned}$$

The following proposition enables to express the face averaged values from the cell averaged values, up to order 4.

Proposition 7.2

A second order approximation of the face average of \(f\) from cell averaged \(f_k\) is

$$\begin{aligned} f(z_{k+1/2}) = \frac{1}{2} \left[ f_{k+1} + f_{k}\right] +\mathcal{O}(\varDelta z^2). \end{aligned}$$

whereas a fourth order approximation gives

$$\begin{aligned} f(z_{k+1/2}) = \frac{7}{12} \left[ f_{k+1} + f_{k}\right] - \frac{1}{12} \left[ f_{k+2} + f_{k-1}\right] +\mathcal{O}(\varDelta z^4). \end{aligned}$$

Then, we deduce, for a function \(g=g(x,y)\),

$$\begin{aligned} \int _{C^y_j} g(x_{i+1/2},y) dy&= \frac{1}{2}(g_{i+1, j} + g_{i,j}) +\mathcal{O}(\varDelta x^2), \;\; \text{ for } \text{ the } \text{ second } \text{ order }\\&= \frac{7}{12} \left( g_{i+1,j} + g_{i,j} \right) - \frac{1}{12} \left( g_{i+2,j} + g_{i-1,j} \right) +\mathcal{O}(\varDelta x^4), \\&\text{ for } \text{ the } \text{ fourth } \text{ order } \end{aligned}$$

and

$$\begin{aligned} \int _{C^x_i} g(x,y_{j+1/2}) dx&= \frac{1}{2}(g_{i, j+1} + g_{i,j})+\mathcal{O}(\varDelta y^2), \;\; \text{ for } \text{ the } \text{ second } \text{ order }\\&= \frac{7}{12} \left( g_{i,j+1} + g_{i,j} \right) - \frac{1}{12} \left( g_{i,j+2} + g_{i,j-1} \right) +\mathcal{O}(\varDelta y^4), \\&\text{ for } \text{ the } \text{ fourth } \text{ order }. \end{aligned}$$

The following proposition enables to express the face averaged derivative from cell averaged values, up to order 4.

Proposition 7.3

For any function \(f\), we have the following second order approximation

$$\begin{aligned} f'(z_{k+1/2}) = \frac{1}{\varDelta z }(f_{k+1}-f_k) + \mathcal{O}(\varDelta z^2). \end{aligned}$$

and the fourth order approximation

$$\begin{aligned} f'(z_{k+1/2}) = \frac{5}{4\varDelta z }\left[ f_{k+1} - f_{k} \right] -\frac{1}{12\varDelta z}\left[ f_{k+2} -f_{k-1}\right] +\mathcal{O}(\varDelta z ^4). \end{aligned}$$

Then, we deduce, for a function \(g=g(x,y)\),

$$\begin{aligned} \int _{C^y_j} \partial _x g(x_{i+1/2},y) dy&= \frac{1}{\varDelta x}(g_{i+1,j}-g_{i,j}) + \mathcal{O}(\varDelta x^2), \;\; \text{ for } \text{ the } \text{ second } \text{ order }\\&= \frac{5}{4\varDelta x} \left( g_{i+1,j} - g_{i,j} \right) - \frac{1}{12\varDelta x} \left( g_{i+2,j} - g_{i-1,j} \right) + \mathcal{O}(\varDelta x^4), \\&\text{ for } \text{ the } \text{ fourth } \text{ order } \end{aligned}$$

and

$$\begin{aligned} \int _{C^x_i} \partial _y g(x,y_{j+1/2}) dx&= \frac{1}{\varDelta y}(g_{i,j+1}-g_{i,j})+ \mathcal{O}(\varDelta y^2), \;\; \text{ for } \text{ the } \text{ second } \text{ order }\\&= \frac{5}{4\varDelta y} \left( g_{i,j+1} -g_{i,j} \right) - \frac{1}{12\varDelta y} \left( g_{i,j+2} - g_{i,j-1} \right) + \mathcal{O}(\varDelta y^4), \\&\text{ for } \text{ the } \text{ fourth } \text{ order }. \end{aligned}$$

Finally, we present some relations useful for the numerical approximations of the cross derivatives.

Proposition 7.4

For a function \(g=g(x,y)\), we get

$$\begin{aligned} \int _{C^x_i} \partial _x g(x,y_{j+1/2}) dx&= g(x_{i+1/2},y_{j+1/2})- g(x_{i-1/2},y_{j+1/2}) = (D_y D_x g)_{i,j}, \end{aligned}$$

and

$$\begin{aligned} \int _{C_j^y} \partial _y g(x_{i+1/2},y) dy&= g(x_{i+1/2},y_{j+1/2})- g(x_{i+1/2},y_{j-1/2}) = (D_x D_y g)_{i,j}. \end{aligned}$$

We used the notations

$$\begin{aligned} (D_x g)_{i,j}&= \frac{1}{\varDelta x}(g_{i+1,j}-g_{i,j})+\mathcal{O}(\varDelta x^2), \;\; \text{ for } \text{ the } \text{ second } \text{ order }\\&= \frac{7}{12\varDelta x}(g_{i+1,j}+g_{i,j}) -\frac{1}{12\varDelta x}(g_{i+2,j}+g_{i-1,j})+\mathcal{O}(\varDelta x^4), \\&\text{ for } \text{ the } \text{ fourth } \text{ order }. \end{aligned}$$

and

$$\begin{aligned} (D_y g)_{i,j}&= \frac{1}{\varDelta y}(g_{i,j+1}-g_{i,j})+\mathcal{O}(\varDelta y^2), \;\; \text{ for } \text{ the } \text{ second } \text{ order }\\&= \frac{7}{12\varDelta y}(g_{i,j+1}+g_{i,j}) -\frac{1}{12\varDelta y}(g_{i,j+2}+g_{i,j-1})+\mathcal{O}(\varDelta y^4), \\&\text{ for } \text{ the } \text{ fourth } \text{ order }, \end{aligned}$$

so that

$$\begin{aligned} (D_x D_y g)_{i,j}&= \frac{1}{4\varDelta x\varDelta y}(g_{i+1,j+1}-g_{i+1,j}+g_{i,j+1}-g_{i,j})+\mathcal{O}(\varDelta x^2)+\mathcal{O}(\varDelta y^2), \nonumber \\&\text{ for } \text{ the } \text{ second } \text{ order } \end{aligned}$$
(7.1)
$$\begin{aligned} (D_x D_y g)_{i,j}&= \frac{7}{12\varDelta x\varDelta y} \left[ \frac{7}{12}(g_{i+1,j+1}+g_{i+1,j})-\frac{1}{12} (g_{i+1,j+2}+g_{i+1,j-1})\right] \nonumber \\&+ \frac{7}{12\varDelta x\varDelta y} \left[ \frac{7}{12}(g_{i,j+1}+g_{i,j})-\frac{1}{12}(g_{i,j+2}+g_{i,j-1})\right] \nonumber \\&- \frac{1}{12\varDelta x\varDelta y} \left[ \frac{7}{12}(g_{i+2,j+1}+g_{i+2,j})-\frac{1}{12}(g_{i+2,j+2} +g_{i+2,j-1})\right] \nonumber \\&- \frac{1}{12\varDelta x\varDelta y} \left[ \frac{7}{12}(g_{i-1,j+1}+g_{i-1,j})-\frac{1}{12} (g_{i-1,j+2}+g_{i-1,j-1})\right] \nonumber \\&+ \mathcal{O}(\varDelta x^4)+\mathcal{O}(\varDelta y^4), \;\; \text{ for } \text{ the } \text{ fourth } \text{ order }. \end{aligned}$$
(7.2)

1.2 Linear Stability Analysis: Second Order

In this Appendix, the computations related to the linear stability analysis for the second order in space are detailed, for the SH and ARK schemes.

1.2.1 Semi-Implicit Scheme (SH)

The first step of the scheme writes

$$\begin{aligned} T^\star _{i,j}&= T^n_{i,j} + \frac{\varDelta t}{\varDelta x^2} b_{xx} \left[ T^\star _{i+1,j}-2T^\star _{i,j} + T^\star _{i-1,j}\right] \\&+\, \frac{\varDelta t}{\varDelta x\varDelta y} b_{xy} \left[ T^n_{i+1, j+1} -T^n_{i+1, j-1} -T^n_{i-1, j+1} +T^n_{i-1, j-1} \right] , \end{aligned}$$

whereas the second step is

$$\begin{aligned} T^{n+1}_{i,j}&= T^\star _{i,j} + \frac{\varDelta t}{\varDelta y^2} b_{yy} \left[ T^{n+1}_{i, j+1}-2T^{n+1}_{i,j} + T^{n+1}_{i, j-1}\right] \\&+ \,\frac{\varDelta t}{\varDelta x\varDelta y} b_{xy} \left[ T^\star _{i+1, j+1} -T^\star _{i+1, j-1} -T^\star _{i-1, j+1} +T^\star _{i-1, j-1} \right] . \end{aligned}$$

The Von Neuman analysis leads to the amplification factor for the first step

$$\begin{aligned} r_1 = \frac{1- \frac{\varDelta t}{\varDelta x^2} b_{xy} \sin (k_y\varDelta y) \sin (k_x\varDelta x)}{1+ \frac{4\varDelta t}{\varDelta x^2} b_{xx} \sin ^2 (k_x\varDelta x/2)}. \end{aligned}$$

In the same way, the amplification factor \(r_2\) for the second step writes

$$\begin{aligned} r_2 = \frac{1- \frac{\varDelta t}{\varDelta x^2} b_{xy} \sin (k_y\varDelta y) \sin (k_x\varDelta x)}{ 1+ \frac{4\varDelta t}{\varDelta y^2} b_{yy} \sin ^2 (k_y\varDelta y/2) }, \end{aligned}$$

and then the total amplification factor is \(r=r_1r_2\).

$$\begin{aligned} r := r(\text{ ncfl }, k_x \varDelta x, k_y \varDelta y) = \frac{(1- (\text{ ncfl }/2) b_{xy} A_x A_y\cos (k_x\varDelta x/2)\cos (k_y\varDelta y/2))^2 }{( 1+ (\text{ ncfl }/2) b_{xx}A_x^2)( 1+ (\text{ ncfl }/2) b_{yy}A_y^2)}, \end{aligned}$$

with \(\varDelta t = \text{ ncfl } \frac{\varDelta x^2 }{4} = \text{ ncfl } \frac{\varDelta y^2 }{4}\) and \(A_x=\sin (k_x\varDelta x/2)\) and \(A_y=\sin (k_y\varDelta y/2)\). One can prove that \(|r| \le 1\)

$$\begin{aligned} |r|&\le \frac{(1+ (\text{ ncfl }/2) | b_{xy}| |A_x| |A_y|)^2 }{( 1+ (\text{ ncfl }/2) b_{xx}A_x^2)( 1+ (\text{ ncfl }/2) b_{yy}A_y^2)}\\&\le \frac{(1+ (\text{ ncfl }/2) \sqrt{b_{xx}}\sqrt{b_{yy}} |A_x| |A_y|)^2 }{( 1+ (\text{ ncfl }/2) b_{xx}A_x^2)( 1+ (\text{ ncfl }/2) b_{yy}A_y^2)}\\&= \frac{(1+ (\text{ ncfl }^2/4) b_{xx}b_{yy} A_x^2 A_y^2 +\text{ ncfl } \sqrt{b_{xx}}\sqrt{b_{yy}} |A_x| |A_y| ) }{( 1+ (\text{ ncfl }^2/4) b_{xx}b_{yy}A_x^2A_y^2 + (\text{ ncfl }/2) ( b_{xx}A_x^2+b_{yy}A_y^2))}\\&\le \frac{(1+ (\text{ ncfl }^2/4) b_{xx}b_{yy} A_x^2 A_y^2 +(\text{ ncfl }/2) (b_{xx}A_x^2 +b_{yy}A_y^2) ) }{( 1+ (\text{ ncfl }^2/4) b_{xx}b_{yy}A_x^2A_y^2 + (\text{ ncfl }/2) ( b_{xx}A_x^2+b_{yy}A_y^2))} = 1,\\ \end{aligned}$$

which proves the unconditional stability of the scheme.

1.2.2 Additive Runge–Kutta

We consider the second order spatial discretization coupled with a first order time discretization. The numerical scheme then reads

$$\begin{aligned}&T^{n+1}_{i,j} - \frac{\varDelta t\lambda }{\varDelta x^2}[T^{n+1}_{i+1,j}+T^{n+1}_{i,j+1}-4T^{n+1}_{i,j} +T^{n+1}_{i-1,j}+T^{n+1}_{i,j-1} ]\\&\quad = T^n_{i,j} + \frac{\varDelta t(b_{xx} -\lambda )}{\varDelta x^2}[T^{n}_{i+1,j}-2T^{n}_{i,j} +T^{n}_{i-1,j}]\\&\quad +\, \frac{\varDelta t(b_{yy} -\lambda )}{\varDelta x^2}[T^{n}_{i,j+1}-2T^{n}_{i,j} +T^{n}_{i,j-1}]\\&\quad +\,2\frac{\varDelta t b_{xy}}{4\varDelta x^2}(T^{n}_{i+1,j+1}-T^{n}_{i+1,j-1}-T^{n}_{i-1,j+1}+T^{n}_{i-1,j-1}). \end{aligned}$$

The Von Neuman analysis leads to the following amplification factor \(r=r_1/r_2\) with \((\hbox {denoting ncfl}=(4\varDelta t)/\varDelta x^2)\)

$$\begin{aligned} r_1&= 1 - \frac{4\varDelta t(b_{xx} -\lambda )}{\varDelta x^2}\sin ^2(k_x\varDelta x/2)- \frac{4\varDelta t(b_{yy} -\lambda )}{\varDelta x^2}\sin ^2(k_y\varDelta x/2) \\&\quad -\, 2\frac{\varDelta t b_{xy}}{\varDelta x^2}\sin (k_x\varDelta x)\sin (k_y\varDelta x),\\ r_2&= 1+ \frac{4\varDelta t\lambda }{\varDelta x^2}(\sin ^2(k_x\varDelta x/2)+\sin ^2(k_y\varDelta x/2)). \end{aligned}$$

Introducing \(A_x=\sin (k_x\varDelta x/2)\) and \(A_y=\sin (k_y\varDelta y/2)\), we get

$$\begin{aligned} \left| \frac{r_1}{r_2} \right| = \left| 1- \frac{\text{ ncfl } (b_{xx}A_x^2+ b_{yy} A_y^2- 2 b_{xy} A_xA_y \cos (k_x\varDelta x/2)\cos (k_y\varDelta x/2))}{1+\text{ ncfl } \lambda (A_x^2+A_y^2)}\right| . \end{aligned}$$

We now need to check the inequalities \(-1<r_1/r_2<1\). The inequality \(r_1/r_2<1\) is always ensured since the numerator is non negative:

$$\begin{aligned}&b_{xx}A_x^2+ b_{yy} A_y^2- 2 b_{xy} A_xA_y \cos (k_x\varDelta x/2)\cos (k_y\varDelta x/2)\\&\quad \ge b_{xx}A_x^2+ b_{yy} A_y^2- 2 b_{xy} A_xA_y , \end{aligned}$$

and

$$\begin{aligned} b_{xx}A_x^2+ b_{yy} A_y^2- 2 b_{xy} A_xA_y&= \frac{1}{b_{yy}} \left( b_{yy}b_{xx}A_x^2+ b^2_{yy} A_y^2- 2 b_{yy} b_{xy} A_xA_y\right) \\&\ge \frac{1}{b_{yy}} \left( b_{xy} A_x - b_{yy} A_y\right) ^2.\\ \end{aligned}$$

The inequality \(-1< r_1/r_2\) rewrites as

$$\begin{aligned} \frac{\text{ ncfl } (b_{xx}A_x^2+ b_{yy} A_y^2- 2 b_{xy} A_xA_y \cos (k_x\varDelta x/2)\cos (k_y\varDelta x/2))}{1+\text{ ncfl } \lambda (A_x^2+A_y^2)}\le 2. \end{aligned}$$

But, with the following estimate on the numerator

$$\begin{aligned}&\left| b_{xx}A_x^2+ b_{yy} A_y^2- 2 b_{xy} A_xA_y \cos (k_x\varDelta x/2)\cos (k_y\varDelta x/2)) \right| \\&\quad \le \left| b_{xx}A_x^2+ b_{yy} A_y^2 + 2 \sqrt{|b_{xx}|}\sqrt{|b_{yy}|} A_xA_y \right| \\&\quad \le \left| b_{xx}A_x^2+ b_{yy} A_y^2 +b_{xx} b_{yy} A_x^2A_y^2 \right| \\&\quad \le 2 \left| b_{xx}A_x^2+ b_{yy} A_y^2 \right| , \end{aligned}$$

we deduce

$$\begin{aligned} \frac{\text{ ncfl } (b_{xx}A_x^2+ b_{yy} A_y^2)}{1+\text{ ncfl } \lambda (A_x^2+A_y^2)}\le 1, \end{aligned}$$

which is always true since \(\lambda = \max (|X_1|, |X_2|)\ge \max (b_{xx}, b_{yy})\).

1.3 Linear Stability Analysis: Fourth Order

We detail in this part the computations of the linear stability analysis of the two time integrators we focus on: SH and ARK schemes.

1.3.1 Semi-Implicit Scheme (SH)

We write the numerical scheme of order four in space and couple with the semi-implicit scheme. We then define the first step of the scheme as (using the notation above)

$$\begin{aligned} T^\star _{i,j} = T^n_{i,j} + \frac{\varDelta t}{12\varDelta x^2} b_{xx} (D_{xx} T^\star )_{i,j} + \varDelta t b_{xy}(D_x D_y T^n)_{i,j}, \end{aligned}$$

whereas the second step writes

$$\begin{aligned} T^{n+1}_{i,j} = T^\star _{i,j} + \frac{\varDelta t}{12\varDelta y^2} b_{yy} (D_{yy} T^{n+1})_{i,j} + \varDelta t b_{xy}(D_x D_y T^\star )_{i,j}. \end{aligned}$$

where

$$\begin{aligned} (D_{xx} T)_{i,j}&= \left[ -T_{i+2,j} + 16T_{i+1,j} -30T_{i,j} + 16T_{i-1,j} - T_{i-2,j} \right] , \end{aligned}$$
(7.3)
$$\begin{aligned} (D_{yy} T)_{i,j}&= \left[ -T_{i,j+2} + 16T_{i,j+1} -30T_{i,j} + 16T_{i,j-1} - T_{i,j-2} \right] , \end{aligned}$$
(7.4)

and \((D_X D_y T)_{i,j}\) given by (7.2).

Following the Von Neumann analysis, we inject a plane wave solution \(T(t, x, y)=r(t)\exp ^{-\text{ i }(k_x x+k_y y) }\) to get the amplification factor \(r_1\) for the first step (with ncfl\(=4 \varDelta t/\varDelta x^2\))

$$\begin{aligned} r_1(t)&= \frac{1 - \frac{\text{ ncfl }}{144}b_{xy} [ \sin (2k_y\varDelta y) - 8 \sin (k_y\varDelta y)] [\sin (2k_x\varDelta x) - 8 \sin (k_x\varDelta x)]}{ 1 + \frac{\text{ ncfl }}{48}b_{xx} [ 2\cos (2k_x\varDelta x) -32 \cos (k_x\varDelta x) +30 ] }\\&= \frac{1 - \frac{\text{ ncfl }}{144}b_{xy} [ \sin (2k_y\varDelta y) - 8 \sin (k_y\varDelta y)] [\sin (2k_x\varDelta x) - 8 \sin (k_x\varDelta x)]}{ 1 + \frac{\text{ ncfl }}{48}b_{xx} [ 4(\cos (k_x\varDelta x) -7)( \cos (k_x\varDelta x)-1) ] }, \end{aligned}$$

whereas the amplification factor \(r_2\) for the second step is

$$\begin{aligned} r_2(t) = \frac{1 - \frac{\text{ ncfl }}{144}b_{xy} [ \sin (2k_y\varDelta y) - 8 \sin (k_y\varDelta y)] [\sin (2k_x\varDelta x) - 8 \sin (k_x\varDelta x)]}{ 1 + \frac{\text{ ncfl }}{48} b_{yy} [ 2\cos (2k_y\varDelta y) -32 \cos (k_y\varDelta y) +30 ] }. \end{aligned}$$

The amplification factor \(r=r_1 r_2\) is plotted in Fig. 3 for different values of ncfl.

1.3.2 Additive Runge–Kutta

We write the numerical scheme of order four in space and couple with the penalisation technique. We then define the numerical scheme as

$$\begin{aligned} T^{n+1}_{i,j}&= T^n_{i,j} + \frac{\varDelta t}{12\varDelta x^2} (b_{xx}-\lambda )(D_{xx}T^n)_{i,j} + 2\varDelta t b_{xy}(D_x D_y T^n)_{i,j}\\&\quad +\, \frac{\varDelta t}{12\varDelta y^2} (b_{yy}-\lambda )(D_{xx}T^n)_{i,j} +\frac{\varDelta t \lambda }{\varDelta x^2}(D_{xx}T^{n+1})_{i,j} +\frac{\varDelta t \lambda }{\varDelta y^2}(D_{yy}T^{n+1})_{i,j}, \end{aligned}$$

where \((D_xx T)_{i,j}, (D_xx T)_{i,j}\) are given by (7.3) and (7.4), whereas \((D_x D_y T^n)_{i,j}\) is given by(7.2).

Following the Von Neumann analysis, we inject a plane wave solution \(T(t, x, y)=r(t)\exp ^{-\text{ i }(k_x x+k_y y) }\) to get the amplification factor \(r=r_1/r_2\, (\hbox {with}\, \hbox {ncfl}=4 \varDelta t/\varDelta x^2)\) with

$$\begin{aligned} r_1&= 1+\frac{\text{ ncfl } \lambda }{2} (- [\cos (2k_x\varDelta x) + \cos (2k_y\varDelta y)] \\&\quad +\, 16[\cos (k_x\varDelta x) + \cos (k_y\varDelta y)]-30)\\&\quad -\,\frac{\text{ ncfl } }{2} ( b_{xx}[-\cos (2k_x\varDelta x) + 16\cos (k_x\varDelta x)-15]\\&\quad +\, b_{yy}[ \cos (2k_y\varDelta y) + 16\cos (k_y\varDelta y)-15])\\&\quad -\, \frac{2\text{ ncfl } b_{xy}}{9}(\sin (2k_y\varDelta y) - 8\sin (k_y\varDelta y)][\sin (2k_x\varDelta x)-8\sin (k_x\varDelta x)]) \end{aligned}$$

and

$$\begin{aligned} r_2=1+\frac{\text{ ncfl } \lambda }{2}\Big (-[\cos (2k_x\varDelta x)+\cos (2k_y\varDelta y)] + 16[\cos (k_x\varDelta x)+\cos (k_y\varDelta y)]-30 \Big ). \end{aligned}$$

The amplification factor \(r=r_1/r_2\) is plotted in Fig. 5 for different values of ncfl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crouseilles, N., Kuhn, M. & Latu, G. Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics. J Sci Comput 65, 1091–1128 (2015). https://doi.org/10.1007/s10915-015-9999-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9999-1

Keywords

Navigation