Skip to main content
Log in

A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a compact finite difference scheme with global convergence order \(O\big (\tau ^{2-\alpha }+h^4\big )\) is derived for fractional sub-diffusion equations with the spatially variable coefficient subject to Neumann boundary conditions. The difficulty caused by the variable coefficient and the Neumann boundary conditions is overcome by subtle decomposition of the coefficient matrices. The stability and convergence of the proposed scheme are studied using its matrix form by the energy method. The theoretical results are supported by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3979 (1993)

    Article  Google Scholar 

  2. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  4. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science and Technology, Amsterdam (2006)

    MATH  Google Scholar 

  5. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao, X., Sun, Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ren, J., Sun, Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mustapha, K.: An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA. J. Numer. Anal. 31, 719–739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithm. 63, 431–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Abbaszadeh, M., Mohebbi, A.: A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term. Comput. Math. Appl. 66, 1345–1359 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  19. Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl. Math. Model. 23, 667–685 (1999)

    Article  MATH  Google Scholar 

  20. Lai, M., Tseng, Y.: A fast iterative solver for the variable coefficient diffusion equation on a disk. J. Comput. Phys. 208, 196–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, Z.: An unconditionally stable and \(O(\tau ^2+h^4)\) order \(L_\infty \) convergence difference scheme for linear parabolic equation with variable coefficients. Numer. Methods Part Differ. Equ. 17, 619–631 (2001)

    Article  MATH  Google Scholar 

  22. Britt, S., Tsynkov, S., Turkel, E.: A compact fourth order scheme for the Helmholtz equation in polar coordinates. J. Sci. Comput. 45, 26–47 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Medvinsky, M., Tsynkov, S., Turkel, E.: The method of difference potentials for the Helmholtz equation using compact high order schemes. J. Sci. Comput. 53, 150–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)

    Article  MathSciNet  Google Scholar 

  25. Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokkee–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)

    Article  MathSciNet  Google Scholar 

  26. Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)

    Article  MathSciNet  Google Scholar 

  27. Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Part Differ. Equ. (2014). doi:10.1002/num.21912

  28. Wang, Z., Vong, S.: A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput. Math. Appl. 68, 185–196 (2014)

    Article  MathSciNet  Google Scholar 

  29. Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein–Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)

    Article  MathSciNet  Google Scholar 

  30. Vong, S., Wang, Z.: High order difference schemes for a time fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Cui, M.: Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients. Appl. Math. Comput. 246, 464–473 (2014)

    Article  MathSciNet  Google Scholar 

  32. Sun, Z., Wu, X.: A fully discrete scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the referees for their helpful comments. In particular, we would like to thank the referees for pointing out that the scheme in [30] may still work even though the equations have variable coefficients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seakweng Vong.

Additional information

S. Vong: This research is supported by the Macao Science and Technology Development Fund FDCT/001/2013/A and the Grant MYRG2015-00064-FST from University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vong, S., Lyu, P. & Wang, Z. A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions. J Sci Comput 66, 725–739 (2016). https://doi.org/10.1007/s10915-015-0040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0040-5

Keywords

Navigation