Skip to main content
Log in

The Enriched Crouzeix–Raviart Elements are Equivalent to the Raviart–Thomas Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix–Raviart elements are actually identical to the first order Raviart–Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart–Thomas element is equal to that by the Crouzeix–Raviart element. For the eigenvalue problem of the Laplace operator, this paper proves that the error of the enriched Crouzeix–Raviart element is equivalent to that of the first order Raviart–Thomas element up to higher order terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arbogast, T., Chen, Z.X.: On the implementation of mixed methods as nonconforming methods for second order elliptic problems. Math. Comput. 64, 943–972 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93–101 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7–32 (1985)

    MATH  MathSciNet  Google Scholar 

  4. Arnold, D.N., Falk, R.S.: A new mixed formulation for elasticity. Numer. Math. 53, 13–30 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babǔska, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North Holland (1991)

  6. Braess, D.: An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo 46, 149–155 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1996)

    Google Scholar 

  8. Brenner, S.C.: A multigrid algorithm for the first order Raviart–Thomas mixed triangular finite element method. SIAM J. Numer. Anal. 29, 647–678 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cai, Z., Lee, B., Wang, P.: Least-quares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42, 843–859 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cai, Z., Wang, Y.: A multigrid method for the pseudostress formulation of Stokes problems. SIAM J. Sci. Comput. 29, 2078–2095 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen, C., Gallistl, D., Schedensack, M.: Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal. 51, 1715–1734 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carstensen, C., Hoppe, R.H.W.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033–1042 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carstensen, C., Kim, D., Park, E.J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49, 2501–2523 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50, 2803–2823 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Crouzeix, M., Raviart, P.A.: Conforming and Nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér 7 R–3, 33–76 (1973)

    MathSciNet  Google Scholar 

  17. Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Mod. Meth. Appl. Sci. 9, 1165–1178 (1999)

    Article  MATH  Google Scholar 

  18. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytech. Scand. Civil Eng. Ser. 46, 1–28 (1967)

    Google Scholar 

  20. Herrmann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 13–26 (1967)

    Google Scholar 

  21. Hu, J., Huang, Y.Q., Lin, Q.: Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods. J. Sci. Comput. (2014). doi:10.1007/s10915-014-9821-5

  22. Hu, J., Huang, Y.Q., Shen, Q.: The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58, 574–591 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hu, J., Ma, R., Shi, Z.C.: A new a priori error estimate of nonconforming finite element methods. Sci. China Math. 57, 887–902 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hu, J., Xu, J.C.: Convergence of Adaptive Conforming and Nonconforming Finite Element Methods for the Perturbed Stokes Equation, Research Report (2007), School of Mathematical Sciences and Institute of Mathematics, Peking University. (Also available online from December 2007: http://www.math.pku.edu.cn:8000/var/preprint/7297)

  25. Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math. 21, 43–62 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  26. Marini, L.D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22, 493–496 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mao, S., Shi, Z.C.: On the error bounds of nonconforming finite elements. Sci. China Math. 53, 2917–2926 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36, 427–453 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149–169 (1968)

    Google Scholar 

  30. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Math. 606, pp. 292–315, Springer, Berlin (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ma.

Additional information

The first author was supported by the NSFC Project 11271035 and by the NSFC Key Project 11031006.

Appendix: Basis Functions and Convergence Analysis of the ECR Element

Appendix: Basis Functions and Convergence Analysis of the ECR Element

For any \(K\in \mathcal {T}\), we give the basis functions of the shape function space \(\mathrm{ECR}(K)\). Suppose the coordinate of the centroid \(\mathrm{mid}(K)\) is \((M_1,M_2\ldots ,M_n)\). The vertices of \(K\) are denoted by \(a_i,1\le i\le n+1\) and the barycentric coordinates by \(\lambda _1,\lambda _2,\ldots ,\lambda _{n+1}\). Let \(H=\sum _{i<j}|a_i-a_j|^2\), then the basis functions are as follows

$$\begin{aligned}&\phi _K = \frac{n+2}{2}-\frac{n(n+1)^2(n+2)}{2H}\sum ^{n}_{i=1}(x_i-M_i)^2,\\&\phi _j=1-n\lambda _j-\frac{1}{n+1}\phi _K,\quad 1\le j\le n+1. \end{aligned}$$

For any \(v\in V_\mathrm{ECR}\), by the definition of \(V_\mathrm{ECR}\) in Subsect. 2.4, \(\int _{E}[v]dE=0\text { for all }E\in \mathcal {E}(\Omega )\) and \(\int _EvdE=0\text { for all }E\in \mathcal {E}(\partial \Omega )\). From the theory of [23], there holds that

$$\begin{aligned} \Vert \nabla _\mathrm{NC}(u-u_\mathrm{ECR})\Vert \lesssim \Vert \nabla u-{\Pi _0}\nabla u\Vert +osc(f), \end{aligned}$$

where

$$\begin{aligned} osc(f)=\left( \sum _{K\in \mathcal {T}}h_K^2\left[ \inf _{\bar{f}\in P_r(K)}\Vert f-\bar{f}\Vert ^2_{L^2(K)}\right] \right) ^{1/2}, \end{aligned}$$

\(r\ge 0\) is arbitrary. The convergence of the ECR element follows immediately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Ma, R. The Enriched Crouzeix–Raviart Elements are Equivalent to the Raviart–Thomas Elements. J Sci Comput 63, 410–425 (2015). https://doi.org/10.1007/s10915-014-9899-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9899-9

Keywords

Mathematics Subject Classification

Navigation