Skip to main content
Log in

Numerical Caputo Differentiation by Radial Basis Functions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Previously, based on the method of (radial powers) radial basis functions, we proposed a procedure for approximating derivative values from one-dimensional scattered noisy data. In this work, we show that the same approach also allows us to approximate the values of (Caputo) fractional derivatives (for orders between 0 and 1). With either an a priori or a posteriori strategy of choosing the regularization parameter, our convergence analysis shows that the approximated fractional derivative values converge at the same rate as in the case of integer order 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. More precisely, radial power RBF is \((-1)^\beta \Vert x\Vert ^{2\beta -1}\). As the interpolation matrix is not required in this work, we drop the term \((-1)^k\) for the sake of simplicity.

  2. By the Morozov’s discrepancy principle, we select \(\sigma \) that satisfies

    $$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\big (y_{\beta ,\sigma }(x_{i})-{y}_{i}^\delta \big )^{2}=\delta ^{2}. \end{aligned}$$

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975). Pure and Applied Mathematics, vol. 65

    MATH  Google Scholar 

  2. Anderssen, R.S., Bloomfield, P.: Numerical differentiation procedures for non-exact data. Numer. Math. 22(3), 157–182 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)

  4. Durrans, S.R.: Distributions of fractional order statistics in hydrology. Water Resour. Res. 28(6), 1649–1655 (1992)

    Article  Google Scholar 

  5. Faridani, A., Ritman, L.E., Smith, K.T.: Local tomography. SIAM J. Appl. Math. 52(2), 459484 (1992)

    Article  MathSciNet  Google Scholar 

  6. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences 6. World Scientific, Hackensack (2007)

  7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  8. Kranzer, H.C.: An error formula for numerical differentiation. Numer. Math. 5(1), 439–442 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, X., Xu, C.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010)

    MathSciNet  Google Scholar 

  11. Li, M., Xiong, X.T., Wang, Y.J.: A numerical evaluation and regularization of caputo fractional derivatives. J. Phys. Conf. Ser. 290(1), 012011 (2011)

    Article  Google Scholar 

  12. Ling, L., Yamamoto, M.: Numerical simulations for space–time fractional diffusion equations. Int. J. Comput. Methods 10(2), 1341001 (2013)

  13. Ling, L.: Finding numerical derivatives for unstructured and noisy data by multiscale kernels. SIAM J. Numer. Anal. 44(4), 1780–1800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Murio, D.A.: On the stable numerical evaluation of caputo fractional derivatives. Comput. Math. Appl. 51(910), 1539–1550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53(10), 1492–1501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murio, D.A., Mejia, C.E.: Generalized time fractional IHCP with Caputo fractional derivatives. J. Phys. Conf. Ser. 135(1), 012074 (2008)

    Article  MathSciNet  Google Scholar 

  18. Novati, P.: Numerical approximation to the fractional derivative operator. Numer. Math. 1–28 (2013)

  19. Piret, C., Hanert, E.: Fractional differential operator discretization using the radial basis functions method. J. Comput. Phys. To appear

  20. Podlubny, I.: Fractional Differential Equations, Volume 198 of Mathematics in Science and Engineering. Academic Press, San Diego (1999)

    Google Scholar 

  21. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sakamoto, K., Yamamoto, M.: Inverse source problem with a final overdetermination for a fractional diffusion equation. Math. Control Relat. Fields 1(4), 509–518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shirzadi, A., Ling, L., Abbasbandy, S.: Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng. Anal. Bound. Elem. 36(11), 1522–1527 (2012)

    Article  MathSciNet  Google Scholar 

  24. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston & Sons, Washington (1977). Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics

  25. Wan, X.Q., Wang, Y.B., Yamamoto, M.: Detection of irregular points by regularization in numerical differentiation and application to edge detection. Inverse Probl. 22(3), 1089–1103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wei, T., Li, M.: High order numerical derivatives for one-dimensional scattered noisy data. Appl. Math. Comput. 175(2), 1744–1759 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, J., Zhang, L., Zheng, W., Tian, H., Hao, D.-M., Wu, S.-H.: Normalized cut segmentation of thyroid tumor image based on fractional derivatives. In: He, J., Liu, X., Krupinski, E.A., Xu, G. (eds.) Health Information Science, Volume 7231 of Lecture Notes in Computer Science, pp. 100–109. Springer, Berlin (2012)

  28. Zheng, G.H., Wei, T.: Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 233(10), 2631–2640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, H., Tian, W.Y., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56(1), 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This project was partially supported by a CERG Grant of the Hong Kong Research Grant Council, a FRG Grant of the Hong Kong Baptist University, a grant from the National Natural Science Foundation of China (No. 11126126), the Natural Science Foundation of Shanxi (No. 2012021002-2), and the Shanxi Scholarship Council of China (Project No. 2011-025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Leevan Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, Y. & Ling, L. Numerical Caputo Differentiation by Radial Basis Functions. J Sci Comput 62, 300–315 (2015). https://doi.org/10.1007/s10915-014-9857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9857-6

Keywords

Mathematics Subject Classification

Navigation