Skip to main content
Log in

A Scalable Approach for Variational Data Assimilation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Data assimilation (DA) is a methodology for combining mathematical models simulating complex systems (the background knowledge) and measurements (the reality or observational data) in order to improve the estimate of the system state (the forecast). The DA is an inverse and ill posed problem usually used to handle a huge amount of data, so, it is a large and computationally expensive problem. Here we focus on scalable methods that makes DA applications feasible for a huge number of background data and observations. We present a scalable algorithm for solving variational DA which is highly parallel. We provide a mathematical formalization of this approach and we also study the performance of the resulted algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It was shown [28] that incremental 3D-Var is equivalent to a GaussNewton method [10] (i.e. an approximation to a Newton iteration, in which the second-order terms of the Hessian are neglected) applied to the full nonlinear regularization functional.

  2. The idea of using the L-BFGS method in variational data assimilation is not new because of its modest storage requirements and its high performance on large-scale unconstrained convex minimization [39, 46]. L-BFGS method is a Quasi–Newton method that can be viewed as extension of conjugate-gradient methods in which the addition of some modest storage serves to accelerate the convergence rate. The L-BFGS update formula generates the matrices approximating the Hessian using information from the last \(m\) Quasi-Newton iterations, where \(m\) is determined by the user (generally \(3 \le m \le 30\)). After having used the \(m\) vector storage locations for \(m\) quasi-Newton updates, the approximation of the Hessian matrix is updated by dropping the oldest information and replacing it by the newest information. Hence, time complexity of the L-BFGS increases linearly with the size of the \(m\) vectors [30].

References

  1. Antonelli, L., Carracciuolo, L., Ceccarelli, M., D’Amore, L., Murli, A.: Total Variation Regularization for Edge Preserving 3D SPECT Imaging in High Performance Computing Environments. Lecture Notes in Computer Science (LNCS), vol. 2330, pp. 171–180, Springer-Verlag, Berlin, Heidelberg (2002)

  2. Auroux, D., Blum, J.: Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Ser. I 340(340), 873–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, J., Le Dimet, F.X., Navon, I.M.: Data Assimilation for Geophysical Fluids, Volume XIV of Handbook of Numerical Analysis, chapter 9. Elsevier, Amsterdam (2005)

  4. Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imaging in PETSc programming environment: a case study in 3-D echocardiography. Parallel Comput. 32, 67–83 (2006)

    Article  MathSciNet  Google Scholar 

  5. Delahaies, S., Roulstone, L., Nichols, N.K.: Regularization of a Carbon-Cycle Model-Data Fusion Problem. Preprint University of, Reading, MPS-2013-10 (2013)

  6. D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: A parallel three-dimensional variational data assimilation scheme. In: Numerical Analysis and Applied Mathematics, AIP C.P. vol. 1389, pp. 1829–1831 (2011)

  7. D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar software. J. Numer. Anal. Ind. Appl. Math. 7(3–4), 91–105 (2012)

    MathSciNet  Google Scholar 

  8. D’Amore, L., Arcucci, R., Carracciuolo, L., Murli, A.: OceanVAR software for use with NEMO: documentation and test guide. In: CMCC Research Papers Issue RP0173 (2012)

  9. D’Elia, M., Perego, M., Veneziani, A.: A variational data assimilation procedure for the incompressible Navier–Stokes equations in hemodynamics. J. Sci. Comput. 1–20 (2011)

  10. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall Series in Computational Mathematics. Prentice Hall Inc., Englewood Cliffs, NJ (1983)

  11. Dobricic, S., Pinardi, N.: An oceanographic threedimensional variational data assimilation scheme. Ocean Modell. 22, 89–105 (2008)

    Article  Google Scholar 

  12. Freitag, M., Budd, C.J., Nichols, N.K.: Tikhonov regularization for large inverse problems. In: 17th ILAS Conference. Braunschweig, Germany (2011)

  13. Fox, G.C., Williams, R.D., Messina, P.C.: Parallel. Computing Works!. Morgan Kaufmann Publishers Inc., Los Altos, CA (1994)

  14. Foster, I.: Designing and Building Parallel Programs. Addison-Wesley, Reading, MA (1995)

    MATH  Google Scholar 

  15. Ghil, M., Malanotte-Rizzoli, P.: Data Assimilation in Meteorology and Oceanography, Advances in Geophysics, vol. 33. Academic Press, New York (1991)

    Google Scholar 

  16. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Google Scholar 

  17. Haben, S.A., Lawless, A.S., Nichols, N.K.: Conditioning of the 3DVAR Data Assimilation Problem, Mathematics Report 3/2009. Department of Mathematics, University of Reading (2009)

  18. Haben, S.A., Lawless, A.S., Nichols, N.K.: Conditioning of Incremental Variational Data Assimilation, with Application to the Met Office System. Preprint University of Reading, MPS-2010-22 (2010)

  19. Haben, S.A., Lawless, A.S., Nichols, N.K.: Conditioning and preconditioning of the variational data assimilation. Comput. Fluids 46, 252–256 (2011)

    Article  MATH  Google Scholar 

  20. Haben, S.A., Lawless, A.S., Nichols, N.K.: Conditioning of incremental variational data assimilation, with application to the Met Office system. Tellus A 63, 782–792 (2011)

    Google Scholar 

  21. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Google Scholar 

  22. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, MA (2003)

    Google Scholar 

  23. Keyes, D.E.: How scalable is domain decomposition in practice? In: Proceedings of the International Conference Domain Decomposition Methods, Greenwich, pp. 286–297 (1998)

  24. Koivunen, A.C., Kostinski, A.B.: The feasibility of data whitening to improve performance of weather radar. J. Appl. Meteorol. 38, 741–749 (1999)

    Article  Google Scholar 

  25. Kostinski, A.B., Koivunen, A.C.: On the condition number of Gaussian sample-covariance matrices. IEEE Trans. Geosci. Remote Sens. 38, 329–332 (2000)

    Article  Google Scholar 

  26. Johnson, C., Hoskins, B.J., Nichols, N.K.: A singular vector perspective of 4-DVar: filtering and interpolation. Q. J. R. Meteorol. Soc. 131, 120 (2005a)

    Article  Google Scholar 

  27. Johnson, C., Nichols, N.K., Hoskins, B.J.: Very large inverse problems in atmosphere and ocean modelling. Int. J. Numeric. Methods Fluids 47, 759771 (2005b)

    MathSciNet  Google Scholar 

  28. Lawless, A.S., Gratton, S., Nichols, N.K.: Approximate iterative methods for variational data assimilation. Int. J. Numer. Meth. Fluids 47, 1129–1135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A, 97–110 (1986)

    Article  Google Scholar 

  30. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Programm. 45, 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marx, B. A., Potthast, R.W.E.: On Instabilities in Data Assimilation Algorithms. University of Reading, Department of Mathematics and Statistics, Preprint MPS-2012-06 (2012)

  32. Miyoshi, T.: Computational Challenges in Big Data Assimilation with Extreme-Scale Simulations, Talk at BDEC Workshop. Charleston, SC (2013)

  33. Mogensen, K., Alonso Balmaseda, M., Weaver, A.: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. Research Department, CERFACS, Toulouse (2012)

  34. Moler, C.: Experiments with MATLAB (2011)

  35. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Wien. Springer, New York (1984)

    Book  Google Scholar 

  36. Murli, A., D’Amore, L., Carracciuolo, L., Ceccarelli, M., Antonelli, L.: High performance edge-preserving regularization in 3D SPECT imaging. Parallel Comput. 34(2), 115–132 (2008)

    Google Scholar 

  37. NEMO, http://www.nemo.ocean.eu

  38. Navon, I.M.: Data assimilation for numerical weather prediction: a review. In: Park, S.K., Xu, L. (eds.) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin (2009)

  39. Navon, I.M., Legler, D.M.: Conjugate gradient methods for large-scale minimization in metereology. Mon. Weather Rev. 115, 1479–1502 (1987)

    Google Scholar 

  40. Nerger, L., Hiller, W. and Schrter, J. The Parallel Data Assimilation Framework PDAF—a flexible software framework for ensemble data assimilation, EGU General Assembly, April 23–27, 2012, Vienna, Austria (Geophysical Research Abstracts, vol. 14, EGU2012-1885)

  41. Nocedal, J., Byrd, R.H., Lu, P., Zhu, C.: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Potthast, R., Graben, P.: Inverse problems in neural field theory. SIAM J. Appl. Dyn. Syst. 8(4), 1405–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stewart, L.M., Dance, S., Nichols, N.K.: Data assimilation with correlated observation errors: experiments with a 1-D shallow water model. Tellus A. 65, 19546 (2013)

    Google Scholar 

  44. Tikhonov, A.N.: Regularization of incorrectly posed problems. Sov. Math. Dokl. 4, 1624–1627 (1963)

    MATH  Google Scholar 

  45. Vanoye, A., Mendoza, A.: Application of direct regularization techniques and bounded-variable least squares for inverse modeling of an urban emissions inventory. Athmosferic Pollut. Res. 5 (2014)

  46. Zou, X., Navon, I.M., Berger, M., Phua, K.H., Schlick, T. LeDimet, F.X.: Numerical experience with limited-memory quasi-Newton and truncated Newton methods. SIAM J. Optim. 3, 582–608 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa D’Amore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Amore, L., Arcucci, R., Carracciuolo, L. et al. A Scalable Approach for Variational Data Assimilation. J Sci Comput 61, 239–257 (2014). https://doi.org/10.1007/s10915-014-9824-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9824-2

Keywords

Mathematics Subject Classification

Navigation