Skip to main content
Log in

Three-Dimensional Lattice Boltzmann Model for the Complex Ginzburg–Landau Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a lattice Boltzmann model for the three-dimensional complex Ginzburg–Landau equation is proposed. The multi-scale technique and the Chapman–Enskog expansion are used to describe higher-order moments of the complex equilibrium distribution function and a series of complex partial differential equations. The modified partial differential equation of the three-dimensional complex Ginzburg–Landau equation with the third order truncation error is obtained. Based on the complex lattice Boltzmann model, some motions of the stable scroll, such as the scroll wave with a straight filament, scroll ring, and helical scroll are simulated. The comparisons between results of the lattice Boltzmann model with those obtained by the alternative direction implicit scheme are given. The numerical results show that this model can be used to simulate the three-dimensional complex Ginzburg–Landau equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Google Scholar 

  2. Higuera, F.J., Jimènez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

    Google Scholar 

  3. Qian, Y.H., d’humieres, D., Lallemand, P.: Lattice BGK model for Navier–Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)

    MATH  Google Scholar 

  4. Chen, H.D., Chen, S.Y., Matthaeus, M.H.: Recovery of the Navier–Stokes equations using a lattice Boltzmann gas method. Phys. Rev. A 45, 5339–5342 (1992)

    Google Scholar 

  5. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equations: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Google Scholar 

  6. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Fluid Mech. 3, 314–322 (1998)

    Google Scholar 

  7. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  8. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier–Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986)

    Google Scholar 

  9. Wolfram, S.: Cellular automaton fluids 1: basic theory. J. Stat. Phys. 45, 471–518 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Shan, X.W., Chen, H.D.: Lattice Boltzmann model of simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)

    Google Scholar 

  11. Luo, L.S.: Theory of the lattice Boltzmann method: lattice Boltzmann method for nonideal gases. Phys. Rev. E 62, 4982–4996 (2000)

    MathSciNet  Google Scholar 

  12. Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows. J. Comput. Phys. 224, 539–559 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Ladd, A.: Numerical simulations of particle suspensions via a discretized Boltzmann equation, part 2. Numerical results. J. Fluids Mech. 271, 311–339 (1994)

    MathSciNet  Google Scholar 

  14. Filippova, O., Hanel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)

    MATH  Google Scholar 

  15. Chen, S.Y., Chen, H.D., Martinez, D., et al.: Lattice Boltzmann Model for simulation of magneto-hydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991)

    Google Scholar 

  16. Vahala, L., Vahala, G., Yepez, J.: Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence. Phys. Lett. A 306, 227–234 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Vahala, G., Keating, B., Soe, M., et al.: MHD turbulence studies using lattice Boltzmann algorithms. Commun. Comput. Phys. 4, 624–646 (2008)

    Google Scholar 

  18. Dawson, S.P., Chen, S.Y., Doolen, G.D.: Lattice Boltzmann computations for reaction–diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

    Google Scholar 

  19. Yepez, J.: Quantum lattice-gas model for the diffusion equation. Int. J. Mod. Phys. C 12, 1285–1303 (2001)

    MathSciNet  Google Scholar 

  20. Berman, G.P., Ezhov, A.A., Kamenev, D.I., et al.: Simulation of the diffusion equation on a type-II quantum computer. Phys. Rev. A 66, 012310 (2002)

    Google Scholar 

  21. Cali, A., Succi, S., Cancelliere, A., et al.: Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys. Rev. A 45, 5771–5774 (1992)

    Google Scholar 

  22. Blaak, R., Sloot, P.M.: Lattice dependence of reaction–diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Succi, S., Foti, E., Higuera, F.J.: 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)

    Google Scholar 

  24. Sun, C.H.: Lattice-Boltzmann model for high speed flows. Phys. Rev. E 58, 7283–7287 (1998)

    Google Scholar 

  25. Yan, G.W., Chen, Y.S., Hu, S.X.: Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E 59, 454–459 (1999)

    Google Scholar 

  26. Qu, K., Shu, Q., Chew, Y.T.: Alternative method to construct equilibrium distribution function in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75, 036706 (2007)

    MathSciNet  Google Scholar 

  27. Gan, Y.B., Xu, A.G., Zhang, G.C., et al.: Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Phys. A 387, 1721–1732 (2008)

    Google Scholar 

  28. Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)

    Google Scholar 

  29. Nash, R.W., Adhikari, R., Tailleur, J., Cates, M.E.: Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104, 258101 (2010)

    Google Scholar 

  30. Benzi, R., Chibbaro, S., Succi, S.: Mesoscopic lattice Boltzmann modeling of flowing soft systems. Phys. Rev. Lett. 102, 026002 (2009)

    Google Scholar 

  31. Li, H., Ki, H.: Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas. Phys. Rev. E 82, 016703 (2010)

    Google Scholar 

  32. Suga, K., Takenaka, S., Ito, T., et al.: Evaluation of a lattice Boltzmann method in a complex nanoflow. Phys. Rev. E 82, 016701 (2010)

    Google Scholar 

  33. Kekre, R., Butler, J.E., Ladd, A.: Comparison of lattice-Boltzmann and Brownian-dynamics simulations of polymer migration in confined flows. Phys. Rev. E 82, 011802 (2010)

    Google Scholar 

  34. Chopard, B., Luthi, P.O.: Lattice Boltzmann computations and applications to physics. Theor. Comput. Sci. 217, 115–130 (1999)

    MATH  MathSciNet  Google Scholar 

  35. Yan, G.W.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    MATH  MathSciNet  Google Scholar 

  36. Zhang, J.Y., Yan, G.W., Shi, X.B.: Lattice Boltzmann model for wave propagation. Phys. Rev. E 80, 026706 (2009)

    Google Scholar 

  37. Kwon, Y.W., Hosoglu, S.: Application of lattice Boltzmann method, finite element method, and cellular automata and their coupling to wave propagation problems. Comput. Struct. 86, 663–670 (2008)

    Google Scholar 

  38. Yepez, J.: Quantum lattice-gas model for the Burgers equation. J. Stat. Phys. 107, 203–224 (2002)

    MATH  Google Scholar 

  39. Yepez, J.: Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity. Phys. Rev. A 74, 042322 (2006)

    Google Scholar 

  40. Velivelli, A.C., Bryden, K.M.: Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Phys. A 362, 139–145 (2006)

    Google Scholar 

  41. Vahala, G., Yepez, J., Vahala, L.: Quantum lattice gas representation of some classical solitons. Phys. Lett. A 310, 187–196 (2003)

    MATH  MathSciNet  Google Scholar 

  42. Yan, G.W., Zhang, J.Y.: A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation. Math. Comput. Simul. 79, 1554–1565 (2009)

    MATH  Google Scholar 

  43. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Korteweg–de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)

    MATH  Google Scholar 

  44. Yan, G.W., Yuan, L.: Lattice Bhatnagar–Gross–Krook model for the Lorenz attractor. Phys. D 154, 43–50 (2001)

    MATH  MathSciNet  Google Scholar 

  45. Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Berlin (2000)

    Google Scholar 

  46. Ginzburg, I.: Variably saturated flow described with the anisotropic lattice Boltzmann methods. J. Comput. Fluids 25, 831–848 (2006)

    Google Scholar 

  47. Melchionna, S., Succi, S.: Lattice Boltzmann–Poisson method for electrorheological nanoflows in ion channels. Comput. Phys. Commun. 169, 203–206 (2005)

    MATH  Google Scholar 

  48. Capuani, F., Pagonabarraga, I., Frenkel, D.: Discrete solution of the electrokinetic equations. J. Chem. Phys. 121, 973–986 (2004)

    Google Scholar 

  49. Hirabayashi, M., Chen, Y., Ohashi, H.: The lattice BGK model for the Poisson equation. JSME Int. J. Ser. B 44, 45–52 (2001)

    Google Scholar 

  50. Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    MATH  MathSciNet  Google Scholar 

  51. Wang, M.R., Wang, J.K., Chen, S.Y.: Roughness and cavitations effect on electro-osmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods. J. Comput. Phys. 226, 836–851 (2007)

    MATH  Google Scholar 

  52. Wang, H.M., Yan, G.W., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the Laplace equation and the Poisson equation. J. Sci. Comput. 46, 470–484 (2010)

    Google Scholar 

  53. Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Phys. D 69, 327–332 (1993)

    MATH  MathSciNet  Google Scholar 

  54. Succi, S.: Lattice quantum mechanics: an application to Bose–Einstein condensation. Int. J. Mod. Phys. C 9, 1577–1585 (1998)

    Google Scholar 

  55. Zhong, L.H., Feng, S.D., Dong, P., Gao, S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006)

    Google Scholar 

  56. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the nonlinear Schrödinger equation. J. Phys. A 40, 10393–10405 (2007)

    MATH  MathSciNet  Google Scholar 

  57. Shi, B.C.: Lattice Boltzmann simulation of some nonlinear complex equations. Lect. Notes Comput. Sci. 4487, 818–825 (2007)

    Google Scholar 

  58. Yepez, J., Vahala, G., Vahala, L.: Vortex–antivortex pair in a Bose–Einstein condensate. Eur. Phys. J. Spec. Top. 171, 9–14 (2009)

    Google Scholar 

  59. Yepez, J., Vahala, G., Vahala, L.: Twisting of filamentary vortex solitons demarcated by fast Poincaré recursion. Proc. SPIE 7342, 73420M (2009)

    Google Scholar 

  60. Yepez, J., Vahala, G., Vahala, L.: Lattice quantum algorithm for the Schrödinger wave equation in 2 + 1 dimensions with a demonstration by modeling soliton instabilities. Quantum Inf. Process. 4, 457–469 (2005)

    Google Scholar 

  61. Vahala, G., Vahala, L., Yepez, J.: Inelastic vector soliton collisions: a lattice-based quantum representation. Philos. Trans. R. Soc. A 362, 1677–1690 (2004)

    MATH  MathSciNet  Google Scholar 

  62. Vahala, G., Vahala, L., Yepez, J.: Quantum lattice representations for vector solitons in external potentials. Phys. A 362, 215–221 (2006)

    Google Scholar 

  63. Succi, S.: Numerical solution of the Schrödinger equation using discrete kinetic theory. Phys. Rev. E 53, 1969–1975 (1996)

    Google Scholar 

  64. Yepez, J., Boghosian, B.: An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation. Comput. Phys. Commun. 146, 280–294 (2002)

    MATH  MathSciNet  Google Scholar 

  65. Palpacelli, S., Succi, S., Spigler, R.: Ground-state computation of Bose–Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007)

    Google Scholar 

  66. Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose–Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008)

    Google Scholar 

  67. Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471–509 (2005)

    MathSciNet  Google Scholar 

  68. Zhang, J.Y., Yan, G.W.: Lattice Boltzmann model for the complex Ginzburg–Landau equation. Phys. Rev. E 81, 066705 (2010)

    MathSciNet  Google Scholar 

  69. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    MATH  MathSciNet  Google Scholar 

  70. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  71. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Google Scholar 

  72. Fewo, S.I., Kofane, T.C.: A collective variable approach for optical solitons in the cubic–quintic complex Ginzburg–Landau equation with third-order dispersion. Opt. Commun. 281, 2893–2906 (2008)

    Google Scholar 

  73. Porsezian, K., Murali, R., Malomed, B.A., et al.: Modulational instability in linearly coupled complex cubic–quintic Ginzburg–Landau equations. Chaos Solitons Fractals 40, 1907–1913 (2009)

    MATH  MathSciNet  Google Scholar 

  74. Jiang, M.X., Wang, X.N., Ouyang, Q., et al.: Spatiotemporal chaos control with a target wave in the complex Ginzburg–Landau equation system. Phys. Rev. E 69, 056202 (2004)

    Google Scholar 

  75. Zhang, S.L., Bambi, H., Zhang, H.: Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg–Landau equation. Phys. Rev. E 67, 016214 (2003)

    MathSciNet  Google Scholar 

  76. Gong, Y.F., Christini, D.J.: Antispiral waves in reaction–diffusion systems. Phys. Rev. Lett. 90, 088302 (2003)

    Google Scholar 

  77. Brusch, L., Nicola, M.E., Bär, M.: Comment on antispiral waves in reaction–diffusion systems. Phys. Rev. Lett. 92, 89801 (2004)

    Google Scholar 

  78. Kapral, R., Showalter, K.: Chemical Waves and Patterns. Kluwer, Dordrecht (1995)

  79. Winfree, A.T.: When Time Breaks Down. Princeton University Press, NJ (1987)

    Google Scholar 

  80. Berenfeld, O., Wellner, M., Jalife, J., Pertsov, A.M.: Shaping of a scroll wave filament by cardiac fibers. Phys. Rev. E 63, 061901 (2001)

    Google Scholar 

  81. Morgan, S.W., Biktasheva, I.V., Biktashev, V.N.: Control of scroll-wave turbulence using resonant perturbations. Phys. Rev. E 78, 046207 (2008)

    MathSciNet  Google Scholar 

  82. Panfilov, A.V., Hogeweg, P.: Scroll breakup in a three-dimensional excitable medium. Phys. Rev. E 53, 1740–1743 (1996)

    Google Scholar 

  83. Henry, H., Hakim, V.: Linear stability of scroll waves. Phys. Rev. Lett. 85, 5328–5331 (2000)

    Google Scholar 

  84. Luengviriya, C., Hauser, M.J.B.: Stability of scroll ring orientation in an advective field. Phys. Rev. E 77, 056214 (2008)

    Google Scholar 

  85. Henry, H., Hakim, V.: Scroll waves in isotropic excitable media: linear instabilities, bifurcations, and restabilized states. Phys. Rev. E 65, 046235 (2002)

    MathSciNet  Google Scholar 

  86. Henry, H.: Spiral wave drift in an electric field and scroll wave instabilities. Phys. Rev. E 70, 026204 (2004)

    Google Scholar 

  87. Wang, C., Wang, S., Zhang, C., Ouyang, Q.: Spontaneous scroll ring creation and scroll instability in oscillatory medium with gradients. Phys. Rev. E 72, 066207 (2005)

    Google Scholar 

  88. Luengviriya, C., Storb, U., Lindner, G., et al.: Scroll wave instabilities in an excitable chemical medium. Phys. Rev. Lett. 100, 148302 (2008)

    Google Scholar 

  89. Aranson, I., Mitkov, I.: Helicoidal instability of a scroll vortex in three-dimensional reaction–diffusion systems. Phys. Rev. E 58, 4556–4559 (1998)

    Google Scholar 

  90. Qu, Z., Xie, F., Garfinkel, A.: Diffusion-induced vortex filament instability in 3-dimensional excitable media. Phys. Rev. Lett. 83, 2668–2671 (1999)

    Google Scholar 

  91. Aranson, I.S., Bishop, A.R., Kramer, L.: Dynamics of vortex lines in the three-dimensional complex Ginzburg–Landau equation: instability, stretching, entanglement, and helices. Phys. Rev. E 57, 5276–5286 (1998)

    Google Scholar 

  92. Nam, K., Ott, E., Guzdar, P.N., Gabbay, M.: Stability of spiral wave vortex filament with phase twists. Phys. Rev. E 58, 2580–2585 (1998)

    MathSciNet  Google Scholar 

  93. Wellner, M., Berenfeld, O., Pertsov, A.M.: Predicting filament drift in twisted anisotropy. Phys. Rev. E 61, 1845–1850 (2000)

    Google Scholar 

  94. Setayeshgar, S., Bernoff, A.J.: Scroll waves in the presence of slowly varying anisotropy with application to the heart. Phys. Rev. Lett. 88, 028101 (2002)

    Google Scholar 

  95. Verschelde, H., Dierckx, H., Bernus, O.: Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue. Phys. Rev. Lett. 99, 168104 (2007)

    Google Scholar 

  96. Vinson, M., Pertsov, A.: Dynamics of scroll rings in a parameter gradient. Phys. Rev. E 59, 2764–2771 (1999)

    MathSciNet  Google Scholar 

  97. Gabbay, M., Ott, E., Guzdar, P.N.: The dynamics of scroll wave filaments in the complex Ginzburg–Landau equation. Phys. D 118, 371–395 (1998)

    MATH  MathSciNet  Google Scholar 

  98. ten Tusscher, K.H.W.J., Panfilov, A.V.: Eikonal formulation of the minimal principle for scroll wave filaments. Phys. Rev. Lett. 93, 108106 (2004)

    Google Scholar 

  99. Dierckx, H., Bernus, O., Verschelde, H.: A geometric theory for scroll wave filaments in anisotropic excitable media. Phys. D 238, 941–950 (2009)

    MATH  MathSciNet  Google Scholar 

  100. Alonso, S., Panfilov, A.V.: Negative filament tension at high excitability in a model of cardiac tissue. Phys. Rev. Lett. 100, 218101 (2008)

    Google Scholar 

  101. Gabbay, M., Ott, E., Guzdar, P.N.: Motion of scroll wave filaments in the complex Ginzburg–Landau equation. Phys. Rev. Lett. 78, 2012–2015 (1997)

    Google Scholar 

  102. Alonso, S., Kähler, R., Mikhailov, A.S., Sagués, F.: Expanding scroll rings and negative tension turbulence in a model of excitable media. Phys. Rev. E 70, 056201 (2004)

    MathSciNet  Google Scholar 

  103. Luengviriya, C., Müller, S.C., Hauser, M.J.B.: Reorientation of scroll rings in an advective field. Phys. Rev. E 77, 015201(R) (2008)

    Google Scholar 

  104. Bray, M.A., Wikswo, J.P.: Interaction dynamics of a pair of vortex filament rings. Phys. Rev. Lett. 90, 238303 (2003)

    Google Scholar 

  105. Bánsági, T., Steinbock, O.: Nucleation and collapse of scroll rings in excitable media. Phys. Rev. Lett. 97, 198301 (2006)

    Google Scholar 

  106. Wu, Y., Qiao, C., Ouyang, Q., Wang, H.: Control of spiral turbulence by periodic forcing in a reaction–diffusion system with gradients. Phys. Rev. E 77, 036226 (2008)

    Google Scholar 

  107. Alonso, S., Sancho, J.M., Sagués, F.: Suppression of scroll wave turbulence by noise. Phys. Rev. E 70, 067201 (2004)

    Google Scholar 

  108. Wu, N.J., Zhang, H., Ying, H.P., et al.: Suppression of winfree turbulence under weak spatiotemporal perturbation. Phys. Rev. E 73, 060901(R) (2006)

    Google Scholar 

  109. Briscolini, M., Santangelo, P., Succi, S., Benzi, R.: Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows. Phys. Rev. E 50, R1745–R1747 (1994)

    Google Scholar 

  110. Barkley, D.: A model for fast computer simulation of waves in excitable media. Phys. D 49, 61–70 (1991)

    Google Scholar 

  111. Rusakov, A., Medvinsky, A.B., Panfilov, A.V.: Scroll waves meandering in a model of an excitable medium. Phys. Rev. E 72, 022902 (2005)

    MathSciNet  Google Scholar 

  112. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant No. 11272133), and the China Postdoctoral Science Foundation (No. 2011M500002). We would like to thank Prof. Chen Shiyi and Prof. Wang Moran for their many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianying Zhang.

Appendix

Appendix

According to Eqs. (24a, 24b), we have

$$\begin{aligned} P_{ijk}^0&= \sum _\alpha {F_\alpha ^{eq} (\mathbf{x},t)e_{\alpha k} e_{\alpha j} e_{\alpha k} } =0,\end{aligned}$$
(31)
$$\begin{aligned} Q_{ijkm}^0&\equiv \sum _\alpha {F_\alpha ^{eq} (\mathbf{x},t)e_{\alpha i} e_{\alpha j} e_{\alpha k} e_{\alpha m} } =\frac{\lambda c^{2}}{(D+2)}(\delta _{ij} \delta _{km} +\delta _{ik} \delta _{jm} +\delta _{im} \delta _{jk} )\beta A(\mathbf{x},t).\nonumber \\ \end{aligned}$$
(32)

Denote

$$\begin{aligned} \phi ^{p}\equiv \sum _\alpha \Omega _\alpha ^{(p)} \end{aligned}$$
(33)

and

$$\begin{aligned} \psi _{k_1 ,k_2 ,\ldots ,k_n }^p \equiv \sum _\alpha {\Omega _\alpha ^{(p)} e_{\alpha k_1 } e_{\alpha k_2 } \cdots e_{\alpha k_n } },\quad n=1,2,3,\ldots ,\quad p=1,2,3,4. \end{aligned}$$
(34)

Assuming that the additional distribution \(\phi ^{p}\) meets the following moments

$$\begin{aligned} \phi ^1&= H,\end{aligned}$$
(35)
$$\begin{aligned} \phi ^2&= \frac{1}{2}\frac{\partial H}{\partial t_0},\end{aligned}$$
(36)
$$\begin{aligned} \phi ^3&= (1-\tau )\frac{\partial }{\partial t_1}H + \frac{1}{6}\frac{\partial }{\partial t_0}\frac{\partial }{\partial t_0 }H,\end{aligned}$$
(37)
$$\begin{aligned} \phi ^4&= \frac{1}{2}(1-\tau )\frac{\partial }{\partial t_1}\frac{\partial H}{\partial t_0 }+\frac{1}{24}\frac{\partial ^{3}H}{\partial t_0^3}. \end{aligned}$$
(38)

We can obtain

$$\begin{aligned} \psi _i^1&= 0,\end{aligned}$$
(39)
$$\begin{aligned} \psi _i^2&= 0,\end{aligned}$$
(40)
$$\begin{aligned} \psi _i^3&= 0,\end{aligned}$$
(41)
$$\begin{aligned} \psi _{ij}^1&= -\frac{3C_3 \lambda \beta }{\tau C_2 }\delta _{ij} \frac{\partial A}{\partial t_0 },\end{aligned}$$
(42)
$$\begin{aligned} \psi _{ijk}^1&= 0, \end{aligned}$$
(43)

then

$$\begin{aligned} \Psi _{ij}^2&= -\frac{1}{\tau C_2 }\left[ \frac{3C_4 \lambda c^{2}\beta }{(D+2)}\nabla _0^2 A+\left( 6C_4 -3C_3 \frac{3C_3 }{C_2}\right) \lambda \beta \frac{\partial ^{2}}{\partial t_0^2 }A\right. \nonumber \\&\left. \qquad \qquad \,+\,(3C_3 -C_2 C_2 )\lambda \beta \frac{\partial }{\partial t_1 }A\right] \delta _{ij}. \end{aligned}$$
(44)

According to Eq. (13), the conservation law in time scale \(t_0\) can be obtained as

$$\begin{aligned} \frac{\partial A}{\partial t_0 }=H. \end{aligned}$$
(45)

Also, we have

$$\begin{aligned} \frac{\partial H}{\partial t_0 }&= \frac{\partial H}{\partial u}\frac{\partial u}{\partial t_0 }+\frac{\partial H}{\partial v}\frac{\partial v}{\partial t_0 }=\hbox { Re }(H)\frac{\partial H}{\partial u}+\hbox { Im }(H)\frac{\partial H}{\partial v}\equiv \eta ,\end{aligned}$$
(46)
$$\begin{aligned} \frac{\partial ^{2}H}{\partial t_0^2}&= \frac{\partial }{\partial t_0 }\left[ \hbox {Re }(H)\frac{\partial H}{\partial u}+\hbox { Im }(H)\frac{\partial H}{\partial v}\right] =\hbox { Re }(H)\frac{\partial \eta }{\partial u}+\hbox { Im }(H)\frac{\partial \eta }{\partial v}\equiv \zeta ,\end{aligned}$$
(47)
$$\begin{aligned} \frac{\partial ^{3}H}{\partial t_0^3 }&= \frac{\partial }{\partial t_0 }\left[ \hbox {Re }(H)\frac{\partial \eta }{\partial u}+\hbox { Im }(H)\frac{\partial \eta }{\partial v}\right] =\hbox { Re }(H)\frac{\partial \zeta }{\partial u}+\hbox { Im }(H)\frac{\partial \zeta }{\partial v}. \end{aligned}$$
(48)

Summing over Eq. (14), then

$$\begin{aligned} \frac{\partial A}{\partial t_1 }\!+\!C_2 \left[ \frac{\partial }{\partial t_0 }\frac{\partial A}{\partial t_0 }\!+\!\frac{\partial }{\partial t_0 }\frac{\partial \pi _j^0 }{\partial x_{j0} }+\frac{\partial }{\partial x_{i0} }\frac{\partial \pi _i^0 }{\partial t_0 }\!+\!\frac{\partial }{\partial x_{i0} }\frac{\partial \pi _{ij}^0 }{\partial x_{j0} }\right] +\tau \frac{\partial }{\partial t_0 }\phi ^1 \!+\!\tau \frac{\partial }{\partial x_{i0} }\psi _i^1 \!=\!\phi ^2.\nonumber \\ \end{aligned}$$
(49)

According to the Eqs. (35), (36) and (39), we have

$$\begin{aligned} \frac{\partial A}{\partial t_1 }+\beta \nabla _0^2 A(\mathbf{x},t)=0. \end{aligned}$$
(50)

Taking \((13)+(14)\times \varepsilon \) and summing over \(\alpha \), we have

$$\begin{aligned} \frac{\partial A}{\partial t}=\beta \nabla ^{2}A(\mathbf{x},t)+H+O(\varepsilon ^{2}), \end{aligned}$$
(51)

And other equations are

$$\begin{aligned} \frac{\partial H}{\partial t_1 }&= \frac{\partial H}{\partial u}\frac{\partial u}{\partial t_1 }+\frac{\partial H}{\partial v}\frac{\partial v}{\partial t_1 } = \hbox {Re }(\beta \nabla _0^2 A)\frac{\partial H}{\partial u} + \hbox {Im }(\beta \nabla _0^2 A)\frac{\partial H}{\partial v}\nonumber \\&\approx \hbox {Re }(\beta \nabla ^{2}A)\frac{\partial H}{\partial u} + \hbox {Im }(\beta \nabla ^{2}A)\frac{\partial H}{\partial v}. \end{aligned}$$
(52)

Summing over Eq. (15), then

$$\begin{aligned}&C_3 \left[ \frac{\partial }{\partial t_0 }\frac{\partial }{\partial t_0 }\frac{\partial A}{\partial t_0 }+3\frac{\partial }{\partial t_0 }\frac{\partial }{\partial t_0 }\frac{\partial \pi _i^0 }{\partial x_{i0} }+3\frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{i0} }\frac{\partial \pi _{ij}^0 }{\partial x_{j0} }+\frac{\partial }{\partial x_{i0} }\frac{\partial }{\partial x_{k0} }\frac{\partial \pi _{ijk}^0 }{\partial x_{j0}}\right] \nonumber \\&\quad +\, 2C_2 \frac{\partial }{\partial t_1 }\left( \frac{\partial A}{\partial t_0 }+\frac{\partial \pi _i^0 }{\partial x_{i0}}\right) +2C_2 \frac{\partial }{\partial x_{j1} }\left( \frac{\partial \pi _j^0 }{\partial t_0 }+\frac{\partial \pi _{ij}^0 }{\partial x_{i0}}\right) +\frac{\partial A}{\partial t_2 }\nonumber \\&\quad +\,\tau C_2 \left[ \frac{\partial }{\partial t_0 }\frac{\partial }{\partial t_0 }H+2\frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{j0} }\psi _j^1 +\frac{\partial }{\partial x_{i0} }\frac{\partial }{\partial x_{j0} }\psi _{ij}^1\right] \nonumber \\&\quad +\,\tau \frac{\partial }{\partial t_1 }H+\tau \frac{\partial }{\partial x_{j1} }\psi _j^1 +\tau \left( \frac{\partial }{\partial t_0 }\phi _0^2 +\frac{\partial }{\partial x_{i0}}\psi _i^2\right) =\phi ^3 \end{aligned}$$
(53)

According to the moments of the equilibrium distribution function, we have

$$\begin{aligned}&C_3 \left[ \frac{\partial }{\partial t_0 }\frac{\partial }{\partial t_0 }H + 3\lambda \beta \frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{j0} }\frac{\partial A}{\partial x_{j0} }\right] +2C_2 \frac{\partial }{\partial t_1 }H+2C_2 \lambda \beta \frac{\partial }{\partial x_{j1} }\frac{\partial A}{\partial x_{j0} }+\frac{\partial A}{\partial t_2}\nonumber \\&\quad +\,\tau C_2 \left[ \frac{\partial }{\partial t_0 }\frac{\partial }{\partial t_0 }H+\frac{\partial }{\partial x_{i0} }\frac{\partial }{\partial x_{j0} }\psi _{ij}^1\right] +\tau \frac{\partial }{\partial t_1 }H+\tau \frac{\partial }{\partial t_0 }\phi _0^2 +\tau \frac{\partial }{\partial x_{i0} }\psi _i^2 =\phi ^3\qquad \quad \end{aligned}$$
(54)

According to Eqs. (13), (37), (40) and (42), we obtain

$$\begin{aligned} \frac{\partial A}{\partial t_2 }+2C_2 \lambda \beta \frac{\partial }{\partial x_{j1} }\frac{\partial A}{\partial x_{j0}}=0. \end{aligned}$$
(55)

Taking \((13) + (14)\times \varepsilon + (15)\times \varepsilon ^{2}\) and summing over \(\alpha \), we have

$$\begin{aligned} \frac{\partial A}{\partial t}=\beta \nabla ^{2}A(\mathbf{x},t)+H+O(\varepsilon ^{3}), \end{aligned}$$
(56)

and

$$\begin{aligned} \frac{\partial H}{\partial t_2 }=\frac{\partial H}{\partial u}\hbox {Re }\left( -2C_2 \beta \frac{\partial }{\partial x_{j1} }\frac{\partial A}{\partial x_{j0}}\right) +\frac{\partial H}{\partial v}\hbox {Im}\left( -2C_2 \lambda \beta \frac{\partial }{\partial x_{j1} }\frac{\partial A}{\partial x_{j0}}\right) . \end{aligned}$$
(57)

Summing over Eq. (16), then

$$\begin{aligned}&C_4\left[ \frac{\partial ^{4}A}{\partial t_0^4 }+ 4\frac{\partial ^{3}}{\partial t_0^3 }\frac{\partial }{\partial x_{i0} }\pi _i^0 +6\frac{\partial ^{2}}{\partial t_0^2 }\frac{\partial ^{2}}{\partial x_{i0} \partial x_{j0} }\pi _{ij}^0 +4\frac{\partial }{\partial t_0 }\frac{\partial ^{3}}{\partial x_{i0} \partial x_{j0} \partial x_{k0} }P_{ijk}^0\right. \nonumber \\&\left. \quad +\frac{\partial ^{4}}{\partial x_{i0} \partial x_{j0} \partial x_{k0} \partial x_{m0} }Q_{ijkm}^0\right] +3C_3 \frac{\partial }{\partial t_1 }\left[ \frac{\partial ^{2}A}{\partial t_0^2}+2\frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{i0} }M_i^0 +\frac{\partial ^{2}}{\partial x_{i0} \partial x_{j0} }\pi _{ij}^0\right] \nonumber \\&\quad +\,3C_3 \frac{\partial }{\partial x_{j1} }\left[ \frac{\partial ^{2}M_j^0 }{\partial t_0^2 }+2\frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{i0}}\pi _{ij}^0 +\frac{\partial ^{2}}{\partial x_{i0} \partial x_{k0} }P_{ijk}^0\right] +2C_2 \frac{\partial }{\partial t_2 }\left[ \frac{\partial A}{\partial t_0 }+\frac{\partial }{\partial x_{i0} }M_i^0\right] \nonumber \\&\quad +\,2C_2 \frac{\partial }{\partial x_{j2} }\left[ \frac{\partial M_j^0 }{\partial t_0 }+\frac{\partial }{\partial x_{i0}}\pi _{ij}^0 \right] +\frac{\partial A}{\partial t_3}+C_2 \left( \frac{\partial ^{2}A}{\partial t_1^2 }+2\frac{\partial }{\partial t_1 }\frac{\partial }{\partial x_{i1} }M_i^0 +\frac{\partial ^{2}}{\partial x_{i1} \partial x_{j1} }\pi _{ij}^0\right) \nonumber \\&\quad +\,\tau \left[ \frac{\partial \phi _0^1}{\partial t_2 }+\frac{\partial }{\partial x_{i2} }\psi _i^1\right] +\tau C_3 \left[ \frac{\partial ^{3}H}{\partial t_0^3 }+3\frac{\partial ^{2}}{\partial t_0^2 }\frac{\partial }{\partial x_{i0} }\psi _i^1 +3\frac{\partial }{\partial t_0 }\frac{\partial ^{2}}{\partial x_{i0} \partial x_{j0} }\psi _{ij}^1\right. \nonumber \\&\left. \quad +\frac{\partial ^{3}}{\partial x_{i0} \partial x_{j0} \partial x_{k0} }\psi _{ijk}^1\right] +2\tau C_2 \frac{\partial }{\partial t_1 }\left[ \frac{\partial H}{\partial t_0 }+\frac{\partial }{\partial x_{i0} }\psi _i^1\right] +2\tau C_2 \frac{\partial }{\partial x_{j1} }\left[ \frac{\partial \psi _i^1 }{\partial t_0 }+\frac{\partial }{\partial x_{i0} }\psi _{ij}^1\right] \nonumber \\&\quad +\,\tau C_2 \left[ \frac{\partial ^{2}}{\partial t_0^2 }\frac{1}{2}\frac{\partial H}{\partial t_0 }+2\frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{i0} }\psi _i^2 +\frac{\partial ^{2}}{\partial x_{i0} \partial x_{j0} }\psi _{ij}^2 \right] +\tau \frac{\partial }{\partial t_1 }\frac{1}{2}\frac{\partial H}{\partial t_0 }\nonumber \\&\quad +\,\tau \left[ \frac{\partial \phi _0^3 }{\partial t_0 }+\frac{\partial }{\partial x_{i0} }\psi _i^3\right] =\phi ^4. \end{aligned}$$
(58)

According to the moments of the equilibrium distribution, we have

$$\begin{aligned}&\frac{\partial A}{\partial t_3 } + C_4 \frac{\partial ^{4}}{\partial x_{i0} \partial x_{j0} \partial x_{k0} \partial x_{m0} }Q_{ijkm}^0 +\left[ 6C_4 -3C_3 \frac{3C_3 }{C_2 }\right] \lambda \beta \nabla ^{2}\frac{\partial ^{2}}{\partial t_0^2}A\nonumber \\&\quad +\,[3C_3 -C_2 C_2 ]\lambda \beta \nabla ^{2}\frac{\partial }{\partial t_1 }A +\left[ C_4 +\tau C_3 +\frac{1}{2}\tau C_2\right] \frac{\partial ^{3}H}{\partial t_0^3 }\nonumber \\&\quad +\left[ 3C_3 +2\tau C_2+\tau \frac{1}{2}\right] \frac{\partial }{\partial t_1 }\frac{\partial H}{\partial t_0 }+\tau C_2 \frac{\partial ^{2}}{\partial x_{i0} \partial x_{j0} }\psi _{ij}^2+\tau \frac{\partial \phi _0^3 }{\partial t_0} +3C_3 \frac{\partial }{\partial x_{j1} }\left[ 2\frac{\partial }{\partial t_0 }\frac{\partial }{\partial x_{i0} }\pi _{ij}^0\right] \nonumber \\&\quad +\,2C_2 \frac{\partial }{\partial t_2 }\frac{\partial A}{\partial t_0 } \!+\!\tau \frac{\partial H}{\partial t_2 }\!+\!2C_2 \frac{\partial }{\partial x_{j2} }\frac{\partial }{\partial x_{i0} }\pi _{ij}^0 \!+\!C_2 \left( \frac{\partial ^{2}}{\partial x_{i1} \partial x_{j1} }\pi _{ij}^0 \right) \!+\!2\tau C_2 \frac{\partial }{\partial x_{j1} }\frac{\partial }{\partial x_{i0} }\psi _{ij}^1\! =\!\phi ^4.\nonumber \\ \end{aligned}$$
(59)

According to Eqs. (37), (38), (42) and (44), we have

$$\begin{aligned} \frac{\partial A}{\partial t_3 }+(2C_2 +\tau )\frac{\partial H}{\partial t_2 }+2C_2 \frac{\partial }{\partial x_{j2} }\frac{\partial }{\partial x_{i0} }\pi _{ij}^0 +C_2 \left( \frac{\partial ^{2}}{\partial x_{i1} \partial x_{j1}}\pi _{ij}^0 \right) =0. \end{aligned}$$
(60)

Taking \((13) + (14)\times \varepsilon + (15)\times \varepsilon ^{2}+ (16)\times \varepsilon ^{3}\) and summing over \(\alpha \), we have

$$\begin{aligned} \frac{\partial A}{\partial t}=\beta \nabla ^{2}A+H(A)+R+O(\varepsilon ^{4}), \end{aligned}$$
(61)

where

$$\begin{aligned} R&= -\varepsilon ^{3}(2C_2 +\tau )\left[ \frac{\partial H}{\partial u}\hbox {Re}\left( -2C_2 \lambda \beta \frac{\partial }{\partial x_{j1} }\frac{\partial A}{\partial x_{j0}}\right) \right. \nonumber \\&\left. +\,\frac{\partial H}{\partial v}\hbox { Im }\left( -2C_2 \lambda \beta \frac{\partial }{\partial x_{j1} }\frac{\partial A}{\partial x_{j0} }\right) \right] +O(\varepsilon ^{4}). \end{aligned}$$
(62)

Equation (62) is the complex Ginzburg–Landau equation with the third-order accuracy of truncation error and without error rebound effect, it is

$$\begin{aligned} \frac{\partial A}{\partial t}=\beta \nabla ^{2}B+H(A)+O(\varepsilon ^{3}). \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yan, G. Three-Dimensional Lattice Boltzmann Model for the Complex Ginzburg–Landau Equation. J Sci Comput 60, 660–683 (2014). https://doi.org/10.1007/s10915-013-9811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9811-z

Keywords

Navigation