Skip to main content
Log in

A Class of Incomplete Riemann Solvers Based on Uniform Rational Approximations to the Absolute Value Function

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose a new class of incomplete Riemann solvers, based on approximations in the \(L^\infty \)-norm to the absolute value function in \([-1,1]\) by means of rational functions, for the numerical approximation of the solution of hyperbolic systems of conservation laws. The main idea relies on the construction of a numerical approximation to the viscosity matrix by using an appropriate rational real function \(R(x)\), that approximates the function \(|x|\) uniformly in \([-1,1]\), evaluated at the Jacobian of the fluxes of the hyperbolic system computed at some average value (for example, Roe averages). In addition to the Jacobians of the fluxes we shall use either the maximum in absolute value of the characteristic speeds in each cell or an upper bound of them. Thus, the resulting approximate Riemann solver is incomplete in the sense that we do not use the complete spectral decomposition of the Jacobian. Moreover, the new class of Riemann solvers consists of a hierarchy of schemes running from the more dissipative to the less dissipative ones, and having as limiting case a Roe-like scheme. According to the order of the approximation of the generating rational function used, the degree of dissipation can be dosed for particular applications. We study different rational approximations: Newman-type functions, iterative generated Halley functions, and also Chebyshev polynomial approximants. We test our basic algorithms for different initial value Riemann problems for ideal gas dynamics (HD) and magnetohydrodynamics (MHD) to observe their behavior with respect to challenging scenarios in numerical simulations, including some standard numerical pathologies (e. g., heat conduction, postshock oscillations and overheating) and the formation of compound waves in ideal MHD. We also examine our proposed schemes, by computing the numerical approximation of different initial value problems for nonconservative multilayer shallow water equations, where it has been observed that intermediate waves can be properly captured for an appropriate degree of approximation of the generating rational function used. Our numerical tests indicate that the proposed schemes are robust, running stable and accurate with a satisfactory time step restriction (CFL constant), and the computational cost is more advantageous with respect to schemes that use a complete spectral decomposition of the Jacobians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Alouges, F.: Matrice signe et systemes hyperboliques. CMLA Tech. report, ENS Cachan (1998)

  2. Bernstein, S.: Sur la meilleure approximation de \(|x|\) par del polynômes de degrés donés. Acta Math. 37, 1–57 (1913)

    Article  MATH  Google Scholar 

  3. Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brutman, L.: On rational interpolation to \(|x|\) at the adjusted Chebyshev nodes. J. Approx. Theory 95, 146–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brutman, L., Passow, E.: Rational interpolation to \(|x|\) at the Chebyshev nodes. Bull. Aust. Math. Soc. 56, 81–86 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cargo, P., Gallice, G.: Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys. 136, 446–466 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Castro Díaz, M.J., Fernández-Nieto, E.D.: A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34, A2173–2196 (2012)

    Article  MATH  Google Scholar 

  9. Castro Díaz, M.J., Fernández-Nieto, E.D., Ferreiro, A.M., García, J.A., Parés, C.: High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009)

    Article  MathSciNet  Google Scholar 

  10. Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Appl. Shallow Water Syst. Math. Comp. 75, 1103–1134 (2006)

    MATH  Google Scholar 

  11. Castro-Díaz, M.J., Fernández-Nieto, E.D., Narbona-Reina, G., de la Asunción, M.: A two-waves WAF method for nonconservative hyperbolic systems: applications to shallow stratified flows. J. Comput. Phys. (submitted)

  12. Cordier, F., Degond, P., Kumbaro, A.: Phase appearance or disappearance in two-phase flows. J. Sci. Comput. (2013). doi:10.1007/s10915-013-9725-9

  13. Degond, P., Peyrard, P.F., Russo, G., Villedieu, Ph: Polynomial upwind schemes for hyperbolic systems. C. R. Acad. Sci. Paris Sér. I 328, 479–483 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula. J. Comput. Phys. 125, 42–58 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guennebaud, G., Jacob B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  17. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Ndjinga, M., Kumbaro, A., de Vuyst, F., Laurent-Gengoux, P.: Numerical simulation of hyperbolic two-phase flow models using a Roe-type solver. Nucl. Eng. Des. 238, 2075–2083 (2008)

    Article  Google Scholar 

  20. Newman, D.J.: Rational approximation to \(|x|\). Mich. Math. J. 11, 11–14 (1964)

    Article  MATH  Google Scholar 

  21. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Parés, C., Castro, M.J.: On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. M2AN 38, 821–852 (2004)

    Article  MATH  Google Scholar 

  23. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids 18, 555–574 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Serna, S.: A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamics equations. J. Comput. Phys. 228, 4232–4247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Toro, E.F., Billett, S.J.: Centred TVD schemes for hyperbolic conservation laws. IMA J. Numer. Anal. 20, 47–79 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Toro, E.F.: MUSTA: a multi-stage numerical flux. Appl. Numer. Math. 56, 1464–1479 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Toro, E.F., Titarev, V.A.: MUSTA fluxes for systems of conservation laws. J. Comput. Phys. 216, 403–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  30. Torrilhon, M.: Krylov-Riemann solver for large hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 34, A2072–A2091 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Torrilhon, M., Balsara, D.S.: High order WENO schemes: investigations on non-uniform convergence for MHD Riemann problems. J. Comput. Phys. 201, 586–600 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Toumi, I.: A weak formulation for Roe approximate Riemann solver. J. Comput. Phys. 102, 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Gallardo.

Additional information

This research has been partially supported by the Spanish Government Research projects MTM09-11923 and MTM2011-28043. The numerical computations have been performed at the Laboratory of Numerical Methods of the University of Málaga.

Appendix

Appendix

For the ease of implementation of the RVM-Newman-8 method, the explicit form of the function \(R_8^\varepsilon (x)\) is detailed in what follows. A simple calculation shows that the rational function \(R^\varepsilon _8(x)\) can be written as

$$\begin{aligned} R^\varepsilon _8(x) = \frac{a_8x^8+a_6x^6+a_4x^4+a_2x^2}{x^8+b_6x^6+b_4x^4+b_2x^2+b_0}+\varepsilon . \end{aligned}$$

If the Newman’s original choice of nodes is considered (see Sect. 3.1), then

$$\begin{aligned} a_8&= 3.15936173596092&b_6&= 4.00790208450847 \\ a_6&= 2.66037513232789&b_4&= 1.00920540531312 \\ a_4&= 0.223933399698289&b_2&= 0.0283967795936465 \\ a_2&= 0.0018842014579903&b_0&= 0.0000502000298516861 \end{aligned}$$

while the value of the parameter \(\varepsilon \) is given by

$$\begin{aligned} \varepsilon = 0.0073705383650891. \end{aligned}$$

On the other hand, if the Chebyshev nodes are used then

$$\begin{aligned} a_8&= 5.10114861868916&b_6&= 11.0108586149772 \\ a_6&= 13.0528938096911&b_4&= 9.21524750769325 \\ a_4&= 3.91883716338631&b_2&= 0.961801777180106 \\ a_2&= 0.120551892275778&b_0&= 0.00552427172801991 \end{aligned}$$

with

$$\begin{aligned} \varepsilon = 0.0125760117893106. \end{aligned}$$

Finally, the following values correspond to the adjusted Chebyshev nodes:

$$\begin{aligned} a_8&= 4.0&b_6&= 6.5 \\ a_6&= 5.5&b_4&= 2.578125 \\ a_4&= 0.65625&b_2&= 0.08203125 \\ a_2&= 0.00390625&b_0&= 0.000030517578125 \end{aligned}$$

and

$$\begin{aligned} \varepsilon = 0.00203846963093366. \end{aligned}$$

In practice, however, the differences found between the three versions of the method are not noticeable.

Regarding the implementation of the PVM-Chebyshev method, notice that it is not necessary to compute the viscosity matrix \(P_{2p}(A)\) given by (8) explicitly, but only the product \(P_{2p}(A)(w_{i+1}-w_i)\) (see (3)). To calculate it, we first define the vectors

$$\begin{aligned} T^{(2k)} = T_{2k}\bigg (\frac{1}{|\lambda _\text {max}|}A\bigg )(w_{i+1}-w_i), \quad k\ge 0, \end{aligned}$$

and then, following (7), we compute

$$\begin{aligned} V^{(2p)} = \sum _{k=0}^p\gamma _kT^{(2k)}, \end{aligned}$$

where the coefficients

$$\begin{aligned} \gamma _0 = \frac{2}{\pi }, \qquad \gamma _k = \frac{4}{\pi }\frac{(-1)^{k+1}}{(2k-1)(2k+1)}, \quad k\ge 1, \end{aligned}$$

have been previously computed and stored. Finally, from (8) we have that

$$\begin{aligned} P_{2p}(A)(w_{i+1}-w_i) = |\lambda _\text {max}|V^{(2p)}. \end{aligned}$$

The Krylov-Riemann solver can be viewed as a particular case of PVM-method associated to a \(2m\)-degree polynomial of the form

$$\begin{aligned} p_{2m}(x) = \alpha _0^{(m)}+x^2\sum _{k=0}^{m-1}\alpha _{k+1}^{(m)}p_{2k}(x), \end{aligned}$$

where the coefficients \(\alpha _k^{(m)}\) can be found in [30]. Its implementation is similar to that of the PVM-Chebyshev method, that is, we compute the product \(V^{(m)}=p_{2m}(A/|\lambda _\text {max}|)(w_{i+1}-w_i)\) following the recursive procedure

$$\begin{aligned} V^{(m)} = \alpha _0^{(m)}(w_{i+1}-w_i)+\frac{1}{|\lambda _\text {max}|^2}A^2\sum _{k=0}^{m-1}\alpha _{k+1}^{(m)}V^{(k)}, \end{aligned}$$

where the sum is empty for \(m=0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, M.J., Gallardo, J.M. & Marquina, A. A Class of Incomplete Riemann Solvers Based on Uniform Rational Approximations to the Absolute Value Function. J Sci Comput 60, 363–389 (2014). https://doi.org/10.1007/s10915-013-9800-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9800-2

Keywords

Navigation