Skip to main content
Log in

A High-Order Moving Mesh Kinetic Scheme Based on WENO Reconstruction for Compressible Flows on Unstructured Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a high-order moving mesh (HMM) kinetic scheme for compressible flow computations on unstructured meshes. To construct the scheme, we employ the frame of the remapping-free ALE-type kinetic method (Ni et al. in J Comput Phys 228:3154–3171, 2009) to get the discretization of compressible system. For the space accuracy, we use the weighted essential non-oscillatory reconstruction on the adaptive moving mesh from Tang and Tang (SIAM J Numer Anal 41:487–515 2003) to achieve time accuracy,we make use of the kinetic flux which includes time accurate integral, and thus obtain a HMM scheme. A number of numerical examples are given, especially an isentropic vortex problem to show the convergence order of the scheme. Numerical results demonstrate the accuracy and robustness of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azarenok, B.N., Ivanenko, S.A., Tang, T.: Adaptive mesh redistribution method based on Godunov’s scheme. Commun. Math. Sci. 1, 152–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, W.M., Huang, W.Z., Russell, R.D.: An r-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149, 221–244 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  5. Chen, G.X., Tang, H.Z., Zhang, P.W.: Second order accurate Godunov scheme for multicompoment flows on moving trianglar meshes. J. Sci. Comput. 34, 64–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y.B., Jiang, S.: An optimization-based rezoning for ALE methods. Commun. Comput. Phys. 4, 1216–1244 (2008)

    Google Scholar 

  7. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Methods. Springer, Berlin (2000)

  8. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, X.G., Zhang, H.X.: Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Di, Y., Li, R., Tang, T.: A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows. Commun. Comput. Phys. 3, 582–603 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Friedrichs, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998)

    Article  MathSciNet  Google Scholar 

  12. Han, J.Q., Tang, H.Z.: An adaptive moving mesh method for multidimensional ideal magnetohydrodynamics. J. Comput. Phys. 220, 791–812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirt, C.W., Nichols, B.D.: An arbitrary Lagrangian Eulerian computing method for all flow speed. J. Comput. Phys. 135, 203–216 (1997)

    Google Scholar 

  15. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, G., Qiao, Z., Tang, T.: Moving finite element simulations for reaction-diffusion systems. Adv. Appl. Math. Mech. 4(3), 365–381 (2012)

    MathSciNet  Google Scholar 

  17. Ii, S., Xiao, F.: High order multi-moment constrained finite volume method. Part I: basic formulation. J. Comput. Phys. 228, 3669–3707 (2009)

    Google Scholar 

  18. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, C.Q., Xu, K.: A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. J. Comput. Phys. 222, 155–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II: multi-dimensional limiting process. J. Comput. Phys. 208, 570–615 (2005)

    Article  MATH  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Butterworth Heinemann, London (1987)

  22. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Y., Vinokur, M., Wang, Z.J.: Discontinuous spectral difference method for conservation laws on unstructured grids. J. Comput. Phys. 216, 780–801 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lomtev, I., Kirby, R.M., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo, H., Baum, J.D., Löner, R.: High-Reynolds number viscous flow computations using an unstructured-grid method. J. Aircr. 42, 483–492 (2005)

    Article  Google Scholar 

  26. Luo, J., Xu, K.: A high-order WENO-gas kinetic scheme for hydrodynamic equations. www.math.ust.hk/makxu/PAPER/HGKS-WENO.pdf

  27. Ni, G.X., Jiang, S., Xu, K.: Efficient kinetic scheme for steady and unsteady flow simulation on unstructured grid. J. Comput. Phys. 227, 3015–30131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ni, G.X., Jiang, S., Xu, K.: Remapping-free ALE-type kinetic method for flow computations. J. Comput. Phys. 228, 3154–3171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ni, G.X., Jiang, S., Xu, X.H.: A moving mesh BGK scheme for multi material flows. Int. J. Numer. Methods Fluids 69, 878–896 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oliveria, M., Lu, P., Liu, X., Liu, C.: Universal high order subroutine with new shock detector for shock boundary layer interaction. In: AIAA 2009–1139, 47th AIAA Aerospace Sciences Meeting (2009)

  31. Qiu, J.X., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qiu, J.X., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiter. SIAM J. Sci. Comput. 26(3), 907–933 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, H.Z.: A moving mesh method for the Euler flow calculations using a directional monitor function. Commun. Comput. Phys. 1, 656–676 (2006)

    MATH  Google Scholar 

  34. Tang, H.Z., Tang, T.: Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Toro, E., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications. Kluwer/Plenum Academic Publishers, Dordrecht, pp. 907–940 (2001)

  36. Venkatakrishnan, V.: Perspective on unstructured grid flow solver. AIAA J. 34, 533–547 (1996)

    Article  MATH  Google Scholar 

  37. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. K. Xu and the referees for the useful suggestions which improve this paper. S. Jiang is supported by the National Basic Research Program under the Grant 2011CB309705 and NSFC (Grant No. 11229101), and G. X. Ni is supported by the NSFC (Grant No. 10971016, 91130020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihua Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Ni, G. & Jiang, S. A High-Order Moving Mesh Kinetic Scheme Based on WENO Reconstruction for Compressible Flows on Unstructured Meshes. J Sci Comput 57, 278–299 (2013). https://doi.org/10.1007/s10915-013-9705-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9705-0

Keywords

Mathematics Subject Classification (2000)

Navigation