Skip to main content
Log in

Multigrid Methods for the Stokes Equations using Distributive Gauss–Seidel Relaxations based on the Least Squares Commutator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A distributive Gauss–Seidel relaxation based on the least squares commutator is devised for the saddle-point systems arising from the discretized Stokes equations. Based on that, an efficient multigrid method is developed for finite element discretizations of the Stokes equations on both structured grids and unstructured grids. On rectangular grids, an auxiliary space multigrid method using one multigrid cycle for the Marker and Cell scheme as auxiliary space correction and least squares commutator distributive Gauss–Seidel relaxation as a smoother is shown to be very efficient and outperforms the popular block preconditioned Krylov subspace methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold, D., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auzinger, W., Stetter, H.: Defect correction and multigrid iterations. In: Hackbusch, W., Trottenberg, U. (eds.) Multigrid Methods, vol. 960, pp. 327–351 (1982)

  3. Bacuta, C., Vassilevski, P., Zhang, S.: A new approach for solving Stokes systems arising from a distributive relaxation method. Numer. Methods Partial Differ. Equ. 27(4), 898–914 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bank, R., Welfert, B., Yserentant, H.: A class of iterative methods for solving saddle point problems. Numerische Mathematik 56(7), 645–666 (1989)

    Article  MathSciNet  Google Scholar 

  5. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14(1), 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braess, D., Sarazin, R.: An efficient smoother for the Stokes problem. Appl. Numer. Math. 23(1), 3–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble, J., Pasciak, J.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50(181), 1–17 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bramble, J., Pasciak, J.: Iterative techniques for time dependent Stokes problems. Comput. Math. Appl. 33(1–2), 13–30 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics. Ges. für Mathematik u, Datenverarbeitung (1984)

  11. Brandt, A., Dinar, N.: Multi-grid Solutions to Elliptic Llow Problems. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center (1979)

  12. Brandt, A., Yavneh, I.: On multigrid solution of high-Reynolds incompressible entering flows. J. Comput. Phys. 101, 151–164 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brandt, A., Yavneh, I.: Accelerating multigrid convergence and high-Reynolds recirculating flows. SIAM J. Sci. Comput. 14, 607–626 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  15. Briggs, W., McCormick, S., et al.: A Multigrid Tutorial, vol. 72. Society for Industrial Mathematics (2000)

  16. Chen, L.: iFEM: An Integrated Finite Element Methods Package in MATLAB. University of California at Irvine, Technical Report (2009)

  17. Chen, L.: Finite difference method (MAC) for Stokes equations. Lecture notes (2012)

  18. Chen, L., Wang, M., Zhong, L.: Second order accuracy of a MAC scheme for the Stokes equations (in preparation) (2013)

  19. Elman, H.: Multigrid and Krylov subspace methods for the discrete Stokes equations. Int. J. Numer. Methods Fluids 22(8), 755–770 (1996)

    Article  MATH  Google Scholar 

  20. Elman, H.: Preconditioning for the steady-state Navier-Stokes equations with low viscosity. SIAM J. Sci. Comput. 20(4), 1299–1316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27(5), 1651–1668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, USA (2005)

    Google Scholar 

  23. Eymard, R., Fuhrmann, J., Linke, A.: MAC schemes on triangular meshes. Finite Vol Complex Appl VI Problems Perspect. 4, 399–407 (2011)

  24. Gaspar, F., Lisbona, F., Oosterlee, C., Vabishchevich, P.: An efficient multigrid solver for a reformulated version of the poroelasticity system. Comput. Methods Appl. Mech. Eng. 196(8), 1447–1457 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaspar, F., Lisbona, F., Oosterlee, C., Wienands, R.: A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2–3), 93–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geenen, T., Vuik, C., Segal, G., MacLachlan, S.: On iterative methods for the incompressible Stokes problem. Int. J. Numer. Methods fluids 65(10), 1180–1200 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gresho, P., Sani, R.: On pressure boundary conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1111–1145 (1987)

    Article  MATH  Google Scholar 

  28. Hackbusch, W.: On multigrid iterations with defect correction. In: Hackbusch, W., Trottenberg, U., (eds.) Multigrid Methods, pp. 461–473 (1982)

  29. Hackbusch, W.: Multi-grid Methods and Applications, vol. 4 of Springer Series in Computational Mathematics (1985)

  30. Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35(2), 560–571 (1998)

    Google Scholar 

  31. Harlow, F., Welch, J., et al.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. fluids 8(12), 2182 (1965)

    Article  MATH  Google Scholar 

  32. Hu, Q., Zou, J.: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer. Math. 93(2), 333–359 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. John, V., Matthies, G.: Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Numer. Methods Fluids 37(8), 885–903 (2001)

    Article  MATH  Google Scholar 

  34. Larin, M., Reusken, A.: A comparative study of efficient iterative solvers for generalized stokes equations. Numer. Linear Algebra Appl. 15(1), 13–34 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maitre, J.F., Musy, F., Nigòn, P.: Fast solver for the Stokes equations using multigrid with a Uzawa smoother. Notes Numer. Fluid Mech. 11, 77–83 (1985)

    Google Scholar 

  36. Murphy, M., Golub, G., Wathen, A.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (1999)

    Google Scholar 

  37. Nicolaides, R.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29(6), 1579–1591 (1992)

    Google Scholar 

  38. Nicolaides, R., Porsching, T., Hall, C.: Covolume Methods in Computational Fluid Dynamics, vol. 279. Wiley, New York (1995)

  39. Nicolaides, R., Wu, X.: Analysis and convergence of the MAC scheme II. Navier-Stokes equations. Math. Comput. 65(213), 29–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Niestegge, A., Witsch, K.: Analysis of a multigrid Stokes solver. Appl. Math. Comput. 35(3), 291–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oosterlee, C., Lorenz, F.: Multigrid methods for the Stokes system. Comput. Sci. Eng. 8(6), 34–43 (2006)

    Article  Google Scholar 

  42. Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

    Google Scholar 

  43. Patankar, S., Spalding, D.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15(10), 1787–1806 (1972)

    Article  MATH  Google Scholar 

  44. Peric, M., Kessler, R., Scheuerer, G.: Comparison of finite-volume numerical methods with staggered and colocated grids. Comput. Fluids 16(4), 389–403 (1988)

    Article  MATH  Google Scholar 

  45. Pironneau, O.: Finite Element Methods for Fluids. NASA STI/Recon technical report A, vol. 90, p. 24264 (1989)

  46. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Pub Co, USA (1996)

    MATH  Google Scholar 

  48. Shaw, G., Sivaloganathan, S.: On the smoothing properties of the simple pressure-correction algorithm. Int. J. Numer. Methods Fluids 8(4), 441–461 (1988)

    Article  MATH  Google Scholar 

  49. Silvester, D., Elman, H., Ramage, A.: Incompressible flow and iterative solver software (IFISS) version 3.1. Available online at http://www.manchester.ac.uk/ifiss (2011)

  50. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

  51. Vanka, S.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J. Comput. Phys. 65(1), 138–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wathen, A., Rees, T.: Chebyshev semi-iteration in preconditioning for problems including the mass matrix. Electron. Trans. Numer. Anal. 34, 125–135 (2009)

    MathSciNet  Google Scholar 

  53. Wienands, R., Gaspar, F., Lisbona, F., Oosterlee, C.: An efficient multigrid solver based on distributive smoothing for poroelasticity equations. Computing 73(2), 99–119 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Numerische Mathematik 54(5), 543–563 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wittum, G.: On the convergence of multi-grid methods with transforming smoothers. Numerische Mathematik 57(1), 15–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Google Scholar 

  57. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, L.: A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver. M2AN 24, 133–150 (1990)

    MATH  Google Scholar 

  59. Zhu, Y., Sifakis, E., Teran, J., Brandt, A.: An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans. Graph. (TOG) 29(2), 16 (2010)

    Article  Google Scholar 

  60. Zulehner, W.: A class of smoothers for saddle point problems. Computing 65(3), 227–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71(238), 479–506 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of the first author was supported by 2010-2012 China Scholarship Council (CSC). The second author was supported by NSF Grant DMS-1115961, and in part by Department of Energy prime award # DE-SC0006903. The authors are grateful to the discussions with Professors A. Brandt, J. Hu, J. Xu, I. Yavneh, and L. Zikatanov. The second author was introduced to DGS by Prof. Yavenh during the IMA workshop ‘Numerical Solutions of Partial Differential Equations: Fast Solution Techniques’, Dec 2010, and then had further discussion with these experts in the workshop ‘Algebraic Multigrid Methods with Applications to Fluids and Structure Interactions and Other Multi-Physical Systems’ in Kunming Aug 2011. We would also like to thank IMA and Kunming University of Science and Technology for their support and hospitality, as well as for their exciting research atmosphere. The authors also would like to thank two referees for their thorough review. The quality of the paper is improved by addressing their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Chen, L. Multigrid Methods for the Stokes Equations using Distributive Gauss–Seidel Relaxations based on the Least Squares Commutator. J Sci Comput 56, 409–431 (2013). https://doi.org/10.1007/s10915-013-9684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9684-1

Keywords

Navigation