Skip to main content
Log in

An Ordered Upwind Method with Precomputed Stencil and Monotone Node Acceptance for Solving Static Convex Hamilton-Jacobi Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We define a δ-causal discretization of static convex Hamilton-Jacobi Partial Differential Equations (HJ PDEs) such that the solution value at a grid node is dependent only on solution values that are smaller by at least δ. We develop a Monotone Acceptance Ordered Upwind Method (MAOUM) that first determines a consistent, δ-causal stencil for each grid node and then solves the discrete equation in a single-pass through the nodes. MAOUM is suited to solving HJ PDEs efficiently on highly-nonuniform grids, since the stencil size adjusts to the level of grid refinement. MAOUM is a Dijkstra-like algorithm that computes the solution in increasing value order by using a heap to sort proposed node values. If δ>0, MAOUM can be converted to a Dial-like algorithm that sorts and accepts values using buckets of width δ. We present three hierarchical criteria for δ-causality of a node value update from a simplex of nodes in the stencil.

The asymptotic complexity of MAOUM is found to be \(\mathcal {O}((\hat{\Psi}\rho )^{d} N \log N)\), where d is the dimension, \(\hat{\Psi}\) is a measure of anisotropy in the equation, and ρ is a measure of the degree of nonuniformity in the grid. This complexity is a constant factor \((\hat{\Psi}\rho)^{d}\) greater than that of the Dijkstra-like Fast Marching Method, but MAOUM solves a much more general class of static HJ PDEs. Although ρ factors into the asymptotic complexity, experiments demonstrate that grid nonuniformity does not have a large effect on the computational cost of MAOUM in practice. Our experiments indicate that, due to the stencil initialization overhead, MAOUM performs similarly or slightly worse than the comparable Ordered Upwind Method presented in (Sethian and Vladimirsky, SIAM J. Numer. Anal. 41:323, 2003) for two examples on uniform meshes, but considerably better for an example with rectangular speed profile and significant grid refinement around nonsmooth parts of the solution. We test MAOUM on a diverse set of examples, including seismic wavefront propagation and robotic navigation with wind and obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alton, K.: Dijkstra-like ordered upwind methods for solving static Hamilton-Jacobi equations. PhD thesis, University of British Columbia (2010)

  2. Alton, K., Mitchell, I.: Optimal path planning under different norms in continuous state spaces. In: Proceedings of the International Conference on Robotics and Automation, pp. 866–872 (2006)

    Google Scholar 

  3. Alton, K., Mitchell, I.M.: Fast marching methods for stationary Hamilton-Jacobi equations with axis-aligned anisotropy. SIAM J. Numer. Anal. 43, 363–385 (2008)

    MathSciNet  Google Scholar 

  4. Bak, S., McLaughlin, J., Renzi, D.: Some improvements for the fast sweeping method. SIAM J. Sci. Comput. (2010). doi:10.1137/090749645

    MathSciNet  Google Scholar 

  5. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9, 57–69 (2006)

    Article  MathSciNet  Google Scholar 

  7. Boue, M., Dupuis, P.: Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control. SIAM J. Numer. Anal. 36(3), 667–695 (1999)

    Article  MathSciNet  Google Scholar 

  8. Cecil, T.C., Osher, S.J., Qian, J.: Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension. J. Comput. Phys. 213, 458–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall, M.G., Ishii, H., Lions, P.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cristiani, E.: A fast marching method for Hamilton-Jacobi equations modeling monotone front propagations. J. Sci. Comput. 39(2), 189–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Danielsson, P.-E.: Euclidean distance mapping. Comput. Graph. Image Process. 14(3), 227–248 (1980)

    Article  Google Scholar 

  12. Dial, R.B.: Algorithm 360: shortest-path forest with topological ordering. Commun. ACM 12, 632–633 (1969)

    Article  Google Scholar 

  13. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kao, C.Y., Osher, S., Tsai, Y.: Fast sweeping methods for static Hamilton-Jacobi equations. SIAM J. Numer. Anal. 42(6), 2612–2632 (2004–2005)

    Article  MathSciNet  Google Scholar 

  15. Kiefer, J.: Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4, 502–506 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kimmel, R., Sethian, J.A.: Fast marching methods on triangulated domains. Proc. Natl. Acad. Sci. USA 95, 8341–8435 (1998)

    Article  MathSciNet  Google Scholar 

  17. Konolige, K.: Saphira robot control system (2011). http://www.ai.sri.com/konolige/saphira/

  18. Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. J. Sci. Comput. 16(1), 210–227 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Osher, S., Fedkiw, R.P.: Level set methods: An overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Polymenakos, L.C., Bertsekas, D.P., Tsitsiklis, J.N.: Implementation of efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 43, 278–283 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qian, J., Zhang, Y., Zhao, H.: Fast sweeping methods for Eikonal equations on triangulated meshes. SIAM J. Numer. Anal. 45, 83–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi equations. J. Sci. Comput. 31, 237–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sethian, J.A., Vladimirsky, A.: Fast methods for Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc. Natl. Acad. Sci. USA 97(11), 5699–5703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. USA 98(20), 11069–11074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 323–363 (2003)

    Article  MathSciNet  Google Scholar 

  28. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. In: Proceedings of the 33rd Conference on Decision and Control, pp. 1368–1373 (1994)

    Google Scholar 

  30. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vladimirsky, A.: Label-setting methods for multimode stochastic shortest path problems on graphs. Math. Oper. Res. 33(4), 821–838 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Mitchell.

Additional information

This work was supported by a grant from the National Science and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alton, K., Mitchell, I.M. An Ordered Upwind Method with Precomputed Stencil and Monotone Node Acceptance for Solving Static Convex Hamilton-Jacobi Equations. J Sci Comput 51, 313–348 (2012). https://doi.org/10.1007/s10915-011-9512-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9512-4

Keywords

Navigation