Skip to main content
Log in

Two-Dimensional Compact Third-Order Polynomial Reconstructions. Solving Nonconservative Hyperbolic Systems Using GPUs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new kind of high-order reconstruction operator of polynomial type, which is used in combination with the scheme presented in Castro et al. (J. Sci. Comput. 39:67–114, 2009) for solving nonconservative hyperbolic systems. The implementation of the scheme is carried out on Graphics Processing Units (GPUs), thus achieving a substantial improvement of the speedup with respect to normal CPUs. As an application, the two-dimensional shallow water equations with geometrical source term due to the bottom slope is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R.: An essentially non-oscillatory reconstruction procedure on finite-element type meshes: Application to compressible flows. Comput. Methods Appl. Mech. Eng. 116, 95–101 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation. J. Comput. Phys. 114, 45–58 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75, 1103–1134 (2006)

    Article  MATH  Google Scholar 

  4. Castro, M.J., Fernández, E.D., Ferreiro, A.M., García, A., Parés, C.: High order extension of Roe schemes for two dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998)

    Article  MathSciNet  Google Scholar 

  7. Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hagen, T.R., Hjelmervik, J.M., Lie, K.A., Natvig, J.R., Ofstad, M.: Visual simulation of shallow-water waves. Simul. Model. Pract. Theory 13, 716–726 (2005)

    Article  Google Scholar 

  9. Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lastra, M., Mantas, J.M., Ureña, C., Castro, M.J., García, J.A.: Simulation of shallow-water systems using graphics processing units. Math. Comput. Simul. 80, 598–618 (2009)

    Article  MATH  Google Scholar 

  13. Liu, X.D., Osher, S., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. de la Asunción, M., Mantas, J.M., Castro, M.J.: Simulation of one-layer shallow water systems on multicore and CUDA architectures. J. Supercomput. (2009). doi:10.1007/s11227-010-0406-2

    Google Scholar 

  15. Marquina, A.: Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15, 892–915 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. http://www.nvidia.com

  18. NVIDIA. CUDA Zone. http://www.nvidia.com/object/cuda_home.html. Accessed November 2009

  19. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.: A Survey of General-Purpose Computation on Graphics Hardware, Eurographics 2005 State of the Art Report (2005)

  21. Rumpf, M., Strzodka, R.: Graphics processor units: new prospects for parallel computing. Lect. Notes Comput. Sci. Eng. 51, 89–121 (2006)

    Article  Google Scholar 

  22. Schroll, H.J., Svensson, F.: A bi-hyperbolic finite volume method on quadrilateral meshes. J. Sci. Comput. 26, 237–260 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report n. 97–65 (1997)

  24. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–71 (1998)

    Article  MathSciNet  Google Scholar 

  25. Walz, G.: Romberg type cubature over arbitrary triangles. Mannheimer Mathem. Manuskripte Nr. 225, Mannhein (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Gallardo.

Additional information

This research has been partially supported by the Spanish Government Research projects MTM06-08075, P06-RNM-01594, MTM09-11923 and MTM2008-06349-C03-03. The numerical computations have been performed at the Laboratory of Numerical Methods of the University of Málaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo, J.M., Ortega, S., de la Asunción, M. et al. Two-Dimensional Compact Third-Order Polynomial Reconstructions. Solving Nonconservative Hyperbolic Systems Using GPUs. J Sci Comput 48, 141–163 (2011). https://doi.org/10.1007/s10915-011-9470-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9470-x

Keywords

Navigation