Skip to main content
Log in

Remarks on the Consistency of Upwind Source at Interface Schemes on Nonuniform Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This note presents a preliminary study of the supra-convergence of well-balanced (finite volume) schemes for conservation laws with a (nonlinear) geometrical source term. In particular, we consider scalar (linear) advection equations in one dimension, for which smooth analytical solutions are available, and upwind interfacial discretizations for the numerical simulation on nonuniform grids (also generated by adaptive procedures). We point out the inconsistent characteristics of the (local) truncation error, and then we illustrate through a simple example the consistency condition formulated by Wendroff and White, which turns out to be effectively compatible with a (strong) convergence theory at optimal rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvanitis, C.: Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws. J. Sci. Comput. 34(1), 1–25 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arvanitis, C., Delis, A.I.: Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids. J. Sci. Comput. 28(5), 1927–1956 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Ben-Artzi, M., Falcovitz, J.: An upwind second-order scheme for compressible duct flows. SIAM J. Sci. Stat. Comput. 7(3), 744–768 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouche, D., Ghidaglia, J.-M., Pascal, F.: Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation. SIAM J. Numer. Anal. 43(2), 578–603 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouchut, F., Perthame, B.: Kružkov’s estimates for scalar conservation laws revisited. Trans. Am. Math. Soc. 350(7), 2847–2870 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Gremaud, P.-A.: A priori error estimates for numerical methods for scalar conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids. Math. Comp. 66(218), 547–572 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Després, B.: Lax theorem and finite volume schemes. Math. Comp. 73(247), 1203–1234 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Després, B.: An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids. SIAM J. Numer. Anal. 42(2), 484–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoffman, J.D.: Relationship between the truncation errors of centered finite-difference approximations on uniform and nonuniform meshes. J. Comput. Phys. 46(3), 469–474 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kreiss, H.-O., Manteuffel, T.A., Swartz, B., Wendroff, B., White, A.B., Jr.: Supra-convergent schemes on irregular grids. Math. Comp. 47(176), 537–554 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Perthame, B., Simeoni, C.: Convergence of the Upwind Interface Source method for hyperbolic conservation laws. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 61–78. Springer, Berlin (2003)

    Chapter  Google Scholar 

  13. Pike, J.: Grid adaptive algorithms for the solution of the Euler equations on irregular grids. J. Comput. Phys. 71(1), 194–223 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Roe, P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. In: Carasso, C., Raviart, P.A., Serre, D. (eds.) Nonlinear Hyperbolic Problems. Lecture Notes in Math., vol. 1270, pp. 41–51. Springer, Berlin (1987)

    Chapter  Google Scholar 

  15. Rogers, B.D., Borthwick, A.G.L., Taylor, P.H.: Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys. 192(2), 422–451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sfakianakis, N.: Finite difference schemes on non-uniform meshes for Hyperbolic Conservation Laws. Ph.D. thesis, University of Crete, Heraklion (2009)

  17. Teng, Z.-H.: Modified equation with adaptive monotone difference schemes and its convergent analysis. Math. Comp. 77(263), 1453–1465 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tikhonov, A.N., Samarsky, A.A.: On the theory of homogeneous difference schemes. In: Outlines Joint Sympos. Partial Differential Equations, Novosibirsk, 1963, pp. 266–273. Acad. Sci. USSR Siberian Branch, Moscow (1963)

    Google Scholar 

  19. Turkel, E.: Accuracy of schemes with nonuniform meshes for compressible fluid flows. Appl. Numer. Math. 2(6), 529–550 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys. 157(2), 746–761 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wendroff, B., White, A.B., Jr.: A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl. 18(8), 761–767 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Simeoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simeoni, C. Remarks on the Consistency of Upwind Source at Interface Schemes on Nonuniform Grids. J Sci Comput 48, 333–338 (2011). https://doi.org/10.1007/s10915-010-9442-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9442-6

Keywords

Navigation