Skip to main content
Log in

Mesh Redistribution Strategies and Finite Element Schemes for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we consider a new class of Relaxation Finite Element schemes for hyperbolic conservation laws, with more stable behavior on the limit area of the relaxation parameter. Combining this scheme with an efficient adapted spatial redistribution process considered also in this work, we form a robust scheme of controllable resolution. The results on a number of test problems show that this scheme can produce entropic-approximations of high resolution, even on the limit of the relaxation parameter where the scheme lacks of the relaxation mechanism. Thus we experimentally conclude that the proposed spatial redistribution process, has by its own interesting stabilization properties for computational solutions of conservation law problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvanitis, C., Katsaounis, T., Makridakis, C.: Adaptive finite element relaxation schemes for hyperbolic conservation laws. Math. Model. Numer. Anal. 35, 17–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arvanitis, C., Makridakis, C., Tzavaras, A.: Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws. SIAM J. Numer. Anal. 42, 1357–1393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Azarenok, B.N., Ivanenko, S.A., Tang, T.: Adaptive mesh redistribution method based on Godunov’s scheme. Commun. Math. Sci. 1, 152–179 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Babuška, I.: The adaptive finite element method. TICAM Forum Notes no. 7, University of Texas, Austin (1997)

  5. Babuška, I., Gui, W.: Basic principles of feedback and adaptive approaches in the finite element method. Comput. Methods Appl. Mech. Eng. 55, 27–42 (1986)

    Article  Google Scholar 

  6. Beckett, G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Billingsley, P.: Probability and Measure, 2nd edn. Wiley, New York (1992)

    Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  9. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E.: In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697. Springer, Berlin (1998)

    Chapter  Google Scholar 

  11. Fazio, R., LeVêque, R.J.: Moving-Mesh methods for one-dimensional hyperbolic problems using CLAWPACK. Comput. Math. Appl. 45, 273–298 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gosse, L., Makridakis, C.: Two a posteriori error estimates for one dimensional scalar conservation laws. SIAM J. Numer. Anal. 38, 964–988 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harten, S., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 17–33 (1983)

    Article  MathSciNet  Google Scholar 

  14. Hou, T.Y., Lax, P.D.: Dispersive approximations in fluid dynamics. Commun. Pure Appl. Math. 44, 1–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hyman, J.M., Li, S., Petzold, L.R.: An adaptive moving mesh method with static rezoning for partial differential equations. Comput. Math. Appl. 46, 1511–1524 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jaffré, J., Johnson, C., Szepessy, A.: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5, 367–386 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jin, S., Xin, Z.: The relaxing schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49, 427–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. LeVêque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  20. Li, R., Tang, T., Zhang, P.: Moving Mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, S., Petzold, L.: Moving Mesh methods with upwind schemes for time dependent PDEs. J. Comput. Phys. 131, 368–377 (1997)

    Article  MATH  Google Scholar 

  22. Li, S., Petzold, L., Ren, Y.: Stability of moving Mesh systems of partial differential equations. SIAM J. Sci. Comput. 20, 719–738 (1998)

    Article  MathSciNet  Google Scholar 

  23. Lipnikov, K., Shashkov, M.: The error-minimization-based strategy for moving Mesh methods. Commun. Comput. Phys. 1, 53–81 (2006)

    Google Scholar 

  24. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  25. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stockie, J.M., Mackenzie, J.A., Russell, R.D.: A Moving mesh method for one-dimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 22, 1791–1813 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tan, Z., Zhang, Z., Huang, Y., Tang, T.: Moving mesh methods with locally varying time steps. J. Comput. Phys. 35, 17–33 (2004)

    MathSciNet  Google Scholar 

  28. Tang, H.: Solution of the shallow-water equations using an adaptive moving mesh method. Int. J. Numer. Methods Fluids 44, 789–810 (2004)

    Article  MATH  Google Scholar 

  29. Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tzavaras, A.: Viscosity and relaxation approximation for hyperbolic systems of conservation laws. In: Lecture notes in Computational Science and Engineering, vol. 5, pp. 73–122. Springer, New York (1998)

    Google Scholar 

  31. Zhang, Z.: Moving mesh methods for convection-dominated equations and nonlinear conservation problems. Ph.D. Thesis, Hong Kong Baptist University (2003)

  32. Zhang, Z.: Moving mesh method with conservative interpolation based on L 2-projection. Commun. Comput. Phys. 1, 930–944 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Arvanitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvanitis, C. Mesh Redistribution Strategies and Finite Element Schemes for Hyperbolic Conservation Laws. J Sci Comput 34, 1–25 (2008). https://doi.org/10.1007/s10915-007-9155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9155-7

Keywords

Navigation