Skip to main content
Log in

Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a family of high order numerical methods are designed to solve the Hamilton-Jacobi equation for the viscosity solution. In particular, the methods start with a hyperbolic conservation law system closely related to the Hamilton-Jacobi equation. The compact one-step one-stage Lax-Wendroff type time discretization is then applied together with the local-structure-preserving discontinuous Galerkin spatial discretization. The resulting methods have lower computational complexity and memory usage on both structured and unstructured meshes compared with some standard numerical methods, while they are capable of capturing the viscosity solutions of Hamilton-Jacobi equations accurately and reliably. A collection of numerical experiments is presented to illustrate the performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/2002)

    Article  MathSciNet  Google Scholar 

  2. Bryson, S., Levy, D.: Mapped WENO and weighted power ENO reconstruction in semi-discrete central schemes for Hamilton-Jacobi equations. Appl. Numer. Math. 56, 1211–1224 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations. J. Comput. Phys. 223, 398–415 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Modell. Numer. Anal. 25, 337–361 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crandall, M., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dumbser, M.: ADER discontinuous Galerkin schemes for aeroacoustics. In: Proceedings of the Euromech Colloquium, Chamonix, France, vol. 449 (2003)

    Google Scholar 

  14. Dumbser, M., Munz, C.-D.: Arbitrary high order discontinuous Galerkin schemes. In: Cordier, S., Goudon, T., Sonnendrcker, E. (eds.) Numerical Methods for Hyperbolic and Kinetic Problems, pp. 295–333. EMS Publishing House, Helsinki (2005)

    Chapter  Google Scholar 

  15. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. Math. Modell. Numer. Anal. 43, 297–331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 666–690 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang, G., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lafon, F., Osher, S.: High order two dimensional nonoscillatory methods for solving Hamilton-Jacobi scalar equations. J. Comput. Phys. 123, 235–253 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, F., Yakovlev, S.: A central discontinuous Galerkin method for Hamilton-Jacobi equations. J. Sci. Comput. 45, 404–428 (2010). doi:10.1007/s10915-009-9340-y

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, F., Shu, C.-W.: Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett. 18, 1204–1209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, F., Shu, C.-W.: A local-structure-preserving local discontinuous Galerkin method for the Laplace equation. Methods Appl. Anal. 13, 215–234 (2006)

    MATH  MathSciNet  Google Scholar 

  25. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Qiu, J.: Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations. J. Comput. Math. 25, 131–144 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Qiu, J., Shu, C.-W.: Herimte WENO scheme for Hamilton-Jacobi equations. J. Comput. Phys. 204, 82–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  33. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MATH  Google Scholar 

  34. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. 458, 271–281 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  Google Scholar 

  36. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

F. Li was supported in part by the NSF grant DMS-0652481, NSF CAREER award DMS-0847241 and an Alfred P. Sloan Research Fellowship.

J. Qiu was supported in part by NSFC grants 10931004, 1081112028 and 10871093.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Li, F. & Qiu, J. Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations. J Sci Comput 47, 239–257 (2011). https://doi.org/10.1007/s10915-010-9434-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9434-6

Keywords

Navigation