Skip to main content
Log in

Modeling the Early Ionization of Dielectrics by Ultrashort Laser Pulses

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a model for propagation of intense and ultrashort laser pulses ionizing dielectrics. We consider early ionization so that this process is sufficiently weak to avoid requiring a complete description of the ionization process (e.g. the use of kinetic equations which are very expensive from a computational point of view). As the intensity of the field is small, one photon ionization is neglected. Ionization may only occur through multi-photonic and collisional ionization. The conduction band is discretized and multiple-rate equations are written for electron densities. The wave-field evolves through Maxwell equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolova, T., Hahn, Y.: Modeling of laser-induced breakdown in dielectrics with subpicosecond pulses. J. Appl. Phys. 88, 1024 (2000)

    Article  Google Scholar 

  2. Arnold, D., Cartier, E., DiMaria, D.J.: Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide. Phys. Rev. B 45(3), 1477–1480 (1992)

    Article  Google Scholar 

  3. Bergé, L., Skupin, S., Nuter, R., Kasparian, J., Wolf, J.P.: Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007)

    Article  Google Scholar 

  4. Besse, C., Bidégaray, B., Bourgeade, A., Degond, P., Saut, O.: A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP. M2AN Math. Model. Numer. Anal. 38(2), 321–344 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgeade, A., Nkonga, B.: Dynamic load balancing computation of pulses propagating in a nonlinear medium. J. Supercomput. 28(3), 279–294 (2004)

    Article  MATH  Google Scholar 

  6. Bourgeade, A., Saut, O.: Numerical methods for the bidimensional Maxwell–Bloch equations in nonlinear crystals. J. Comput. Phys. 213(2), 823–843 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd, Robert W.: Nonlinear Optics. Academic Press, San Diego (1992)

    Google Scholar 

  8. Christensen, B.H., Balling, P.: Modeling ultrashort-pulse laser ablation of dielectric materials. Phys. Rev. B 79(15), 155424 (2009)

    Article  Google Scholar 

  9. Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441(2–4), 47–189 (2007)

    Article  Google Scholar 

  10. Joglekar, A.P., Liu, H., Spooner, G.J., Meyhöfer, E., Mourou, G., Hunt, A.J.: A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B: Lasers Opt. 77(1), 25–30 (2003)

    Article  Google Scholar 

  11. Keldysh, L.V.: Ionization in the field of a strong electromagnetic wave. J. Exp. Theor. Phys. 20(5), 8 (1965)

    MathSciNet  Google Scholar 

  12. Kennedy, P.K., Div, O.R., Brooks, A.F.B.: A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE J. Quantum Electron. 31(12), 2241–2249 (1995)

    Article  Google Scholar 

  13. Mao, S.S., Quéré, F., Guizard, S., Mao, X., Russo, R.E., Petite, G., Martin, P.: Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A: Mater. Sci. Process. 79(7), 1695–1709 (2004)

    Google Scholar 

  14. Martin, P., Guizard, S., Daguzan, P., Petite, G., D’Oliveira, P., Meynadier, P., Perdrix, M.: Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B 55(9), 5799–5810 (1997)

    Article  Google Scholar 

  15. Newell, A.C., Moloney, J.V.: Nonlinear Optics. Advanced Topics in the Interdisciplinary Mathematical Sciences. Addison-Wesley, Reading (1992)

    Google Scholar 

  16. Peñano, J.R., Sprangle, P., Hafizi, B., Manheimer, W., Zigler, A.: Transmission of intense femtosecond laser pulses into dielectrics. Phys. Rev. E 72(3), 36412 (2005)

    Article  Google Scholar 

  17. Qiu, J., Miura, K., Hirao, K.: Femtosecond laser-induced microfeatures in glasses and their applications. J. Non-Cryst. Solids (2007). doi:10.1016/j.jnoncrysol.2007.02.092

  18. Rethfeld, B.: Free-electron generation in laser-irradiated dielectrics. Phys. Rev. B 73(3), 35101 (2006)

    Article  Google Scholar 

  19. Rethfeld, B., Kaiser, A., Vicanek, M., Simon, G.: Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65(21), 214303 (2002)

    Article  Google Scholar 

  20. Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., Perry, M.D.: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53(4), 1749–1761 (1996)

    Article  Google Scholar 

  21. Vatsya, S.R., Nikumb, S.K.: Modeling of laser-induced avalanche in dielectrics. J. Appl. Phys. 91, 344 (2002)

    Article  Google Scholar 

  22. White, Y.V., Li, X., Sikorski, Z., Davis, L.M., Hofmeister, W.: Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2. Opt. Express 16(19), 14411–14420 (2008)

    Article  Google Scholar 

  23. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. AP-14, 302–307 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Saut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgeade, A., Mézel, C. & Saut, O. Modeling the Early Ionization of Dielectrics by Ultrashort Laser Pulses. J Sci Comput 44, 170–190 (2010). https://doi.org/10.1007/s10915-010-9375-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9375-0

Keywords

Navigation