Skip to main content
Log in

Relativistic phase effect in modeling interactions between ultraintense laser beams and electrons plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In a series of previous papers we proved an accurate connection between quantum and classical equations in the case of electrodynamic systems. We have used this connection to elaborate simplified models for systems composed of very intense laser beams and electrons or atoms. These models are in good agreement with numerous experimental data from literature. In this paper we develop the above approach for the new field of interactions between ultraintense laser beams, having intensities in the range 1018 − 1022 W/cm2, and electron plasmas. We show that in this case new effects take place, such as the fact that the variation of the phase of the field at the point where the electron is situated, decreases when the intensity of the field increases, due to a strong relativistic behavior. This effect leads to an aperiodic behavior of the radiations generated by above interactions, and to a possible new method for solitary waves generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  2. P. Sprangle, E. Esarey, A. Ting, G. Joyce, Appl. Phys. Lett. 53, 2146 (1988)

    Article  ADS  Google Scholar 

  3. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinek, V. Malka, Nature 444, 737 (2006)

    Article  ADS  Google Scholar 

  4. A.B. Borisov et al., Phys. Rev. A 45, 5830 (1992)

    Article  ADS  Google Scholar 

  5. B. Shen, J. Meyer-ter-Vehn, Phys. Rev. E 65, 016405 (2001)

    Article  ADS  Google Scholar 

  6. J.G. Eden, Prog. Quant. Electron. 28, 197 (2004)

    Article  ADS  Google Scholar 

  7. A. Mihailescu, V. Stancalie, V. Pais, IOP J. Phys. Conf. Ser. 508, 012019 (2014)

    Article  Google Scholar 

  8. C. Iorga, V. Stancalie, Can J. Phys. 93, 1413 (2015)

    Article  ADS  Google Scholar 

  9. V. Stancalie, Phys. Plasmas 12, 100705 (2005)

    Article  ADS  Google Scholar 

  10. V. Stancalie, Eur. Phys. J. D 67, 223 (2013)

    Article  ADS  Google Scholar 

  11. V. Stancalie, Eur. Phys. J. D 68, 349 (2014)

    Article  ADS  Google Scholar 

  12. V. Stancalie, AIP Adv. 5, 077186 (2015)

    Article  ADS  Google Scholar 

  13. P.G. Burke, P. Francken, C.J. Joachain, Europhys. Lett. 13, 617 (1990)

    Article  ADS  Google Scholar 

  14. A. Popa, Phys. Rev. A 84, 023824 (2011)

    Article  ADS  Google Scholar 

  15. A. Popa, Eur. Phys. J. D 69, 112, 2015

    Article  ADS  Google Scholar 

  16. F.S. Crawford, Waves, Berkeley Physics Course, Vol. 3, (John Wiley, New York, 1999)

  17. A. Zhidkov, J. Koga, A. Sasaki, M. Uesaka, Phys. Rev. Lett. 88, 185002 (2002)

    Article  ADS  Google Scholar 

  18. C. Bamber et al., Phys. Rev. D 60, 092004 (1999)

    Article  ADS  Google Scholar 

  19. L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields (Pergamon Press, London, 1959)

  20. J.D. Jackson, Classical Electrodynamics (John Wiley, New York, 1999)

  21. A. Popa, Theory of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems (Elsevier-Academic Press, Amsterdam, Boston, 2014)

  22. A. Popa, Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems (Elsevier-Academic Press, Amsterdam, Boston, 2014)

  23. A. Popa, Laser Part. Beams 32, 477 (2014)

    Article  ADS  Google Scholar 

  24. A. Popa, IEEE Trans. Plasma Sci. 41, 2246 (2013)

    Article  ADS  Google Scholar 

  25. S.Y. Chen, A. Maksimchuk, D. Umstadter, Nature 396, 653 (1998)

    Article  ADS  Google Scholar 

  26. K. Ta Phuok, A. Rousse et al., Phys. Rev. Lett. 91, 195001 (2003)

    Article  ADS  Google Scholar 

  27. P. Gibbon, Short Pulse Laser Interaction with Matter (Imperial College Press, London, 2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorica Stancalie.

Additional information

Contribution to the Topical Issue “Relativistic Laser Plasma Interactions”, edited by Tünde Fülöp, Francesco Pegoraro, Vladimir Tikhonchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, A., Stancalie, V. Relativistic phase effect in modeling interactions between ultraintense laser beams and electrons plasma. Eur. Phys. J. D 71, 166 (2017). https://doi.org/10.1140/epjd/e2017-80033-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80033-x

Navigation