Skip to main content
Log in

Numerical Simulation of Electromagnetic Solitons and Their Interaction with Matter

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A suitable correction of the Maxwell model brings to an enlargement of the space of solutions, allowing for the existence of solitons in vacuum. We review the basic achievements of the theory and discuss some approximation results based on an explicit finite-difference technique. The experiments in two dimensions simulate travelling solitary electromagnetic waves, and show their interaction with conductive walls. In particular, the classical dispersion, exhibited by the passage of a photon through a small aperture, is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Gottlieb, D.: A mathematical analysis of the PML method. J. Comput. Phys. 134, 357–363 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Assous, F., Degond, P., Heintze, E., Raviart, P.A., Segre, J.: On a finite-element method for solving the three dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425–451 (1934)

    Article  MATH  Google Scholar 

  6. Born, M., Wolf, E.: Principles of Optics. Oxford, Pergamon (1987)

    Google Scholar 

  7. Bossavit, A.: Computational Electromagnetism. Academic Press, Boston (1998)

    MATH  Google Scholar 

  8. Chinosi, C., Della Croce, L., Funaro, D.: Rotating electromagnetic waves in toroid-shaped regions, to appear in Int. J. Modern Phys. C

  9. Cockburn, B., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Filippov, A.T.: The Versatile Soliton. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  11. Funaro, D.: A full review of the theory of electromagnetism. arXiv:physics/0505068

  12. Funaro, D.: Electromagnetism and the Structure of Matter. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  13. Funaro, D.: A model for electromagnetic solitary waves in vacuum. Preprint

  14. Hyman, J.M., Shashkov, M.: Natural discretization for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Konrad, A.: A method for rendering 3D finite element vector field solution non-divergent. IEEE Trans. Magn. 25, 2822–2824 (1989)

    Article  Google Scholar 

  16. Monk, P.: Finite Elements Methods for Maxwell’s Equations. Oxford Univ. Press, New York (2003)

    Book  Google Scholar 

  17. Munz, C.-D., Schneider, R., Sonnendrücker, E., Voss, U.: Maxwell’s equations when the charge conservation is not satisfied. C. R. Acad. Sci. Paris t.328(I), 431–436 (1999)

    Google Scholar 

  18. Rahman, B., Davies, J.: Penalty function improvement of waveguide solution by finite elements. IEEE Trans. Microwave Theory Tech. MTT-32, 922–928 (1984)

    Article  Google Scholar 

  19. Schilders, W.H.A., ter Maten, E.J.W. (Guest Editors): Handbook of Numerical Analysis, vol. XIII, Numerical Methods in Electromagnetics, Ciarlet P. G. editor, Elsevier (2005)

  20. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks, Pacific Grove (1989)

    MATH  Google Scholar 

  21. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (2000)

    MATH  Google Scholar 

  22. Ugolini, A.: Thesis: Approssimazione di Onde Elettromagnetico–Gravitazionali, Università di Modena e Reggio Emilia (2007)

  23. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Funaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funaro, D. Numerical Simulation of Electromagnetic Solitons and Their Interaction with Matter. J Sci Comput 45, 259–271 (2010). https://doi.org/10.1007/s10915-009-9338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9338-5

Navigation