Skip to main content
Log in

Boundary Feedback Control of the Burgers Equations by a Reduced-Order Approach Using Centroidal Voronoi Tessellations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a reduced-order modelling for boundary feedback control problem of Burgers equations. Brief review of the CVT (centroidal Voronoi tessellation) approaches to reduced-order basis are provided. In CVT-reduced order modelling, we start with a snapshot set just as is done in a SVD (Singular Value Decomposition)-based setting. A weighted (nonuniform density) CVT is introduced and low-order approximate solution and compensator-based control design of Burgers equation is discussed. Through CVT-nonuniform method, the low-order basis is obtained. Then this low-order basis is applied to low-order approximate solution and functional gains to design a low-order controller, and by using the low-order basis order of control modelling was reduced. Numerical experiments show that a solution of reduced-order controlled Burgers equation performs well in comparison with a solution of full order controlled Burgers equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwell, J., King, B.: Reduced order controllers for spatially distributed systems via proper orthogonal decomposition. SIAM J. Sci. Comput. 26, 128–151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bangia, A.K., Batcho, P.F., Kevrekidis, I.G., Karniadakis, G.E.: Unsteady two-dimensional flows in complex geometries: comparative bifurcation studies with global eigen-function expansions. SIAM J. Sci. Comput. 18, 775–805 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burgers, J.M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Trans. R. Ned. Acad. Sci. 17, 1–53 (1939)

    MathSciNet  Google Scholar 

  4. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  5. Burgers, J.M.: Statistical problems connected with asymptotic solution of one-dimensional nonlinear diffusion equation. In: Rosenblatt, M., van Atta, C. (eds.) Statistical Models and Turbulence, p. 41. Springer, Berlin (1972)

    Chapter  Google Scholar 

  6. Burkardt, J., Gunzburger, M., Lee, H.-C.: Centroidal Voronoi tessellation-based reduce-order modeling of complex systems. SIAM J. Sci. Comput. 28, 459–484 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burkardt, J., Gunzburger, M., Lee, H.-C.: POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Eng. 196, 337–355 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burns, J.A., Kang, S.: A control problem for Burgers equation with bounded input/output. Nonlinear Dyn. 2, 235–262 (1991). ICASE Report 90–45, NASA Langley research Center, Hampton, VA (1990)

    Article  Google Scholar 

  9. Chen, C.T.: Linear System Theory and Design. Holt, Rinehart and Winston, New York (1984)

    Google Scholar 

  10. Crommelin, D.T., Majda, A.J.: Strategies for model reduction: comparing different optimal bases. J. Atmos. Sci. 61, 2206–2217 (2004)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44, 102–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gibson, J.S.: The Riccati integral equations for optimal control problems on Hilbert spaces. SIAM J. Control Optim. 17(4), 537–565 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gibson, J.S., Rosen, I.G.: Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary system. Institute for Computer Applications for Science and Engineering, ICASE Report 86-16, NASA Langley Research Center, Hampton, VA (1986)

  15. Kwasniok, F.: The reduction of complex dynamical systems using principal interaction patterns. Physica D 92, 28–60 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kwasniok, F.: Low-order models of the Ginzburg-Landau equation. SIAM J. Appl. Math. 61, 2063–2079 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kunisch, K., Volkwein, S.: Control of Burgers equation by a reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lasiecka, I., Triggiani, R.: Dirichlet boundary control problem for parabolic equation with quadratic cost: analyticity and Riccati’s feedback synthesis. SIAM J. Control Optim. 21, 41–67 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasiecka, I., Triggiani, R.: Algebraic Riccati equations arising in boundary/point control: a review of theoretical and numerical results. I. Continuous case. In: Perspectives in Control Theory, Sielpia, 1988. Progr. Systems Control Theory, vol. 2, pp. 175–210. Birkhäuser Boston, Boston (1990)

    Google Scholar 

  20. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. CRSC Technical Reports, CRSC-TR98-37 (1998)

  22. Marrekchi, H.: Dynamic compensators for a nonlinear conservation law. Ph.D. Dissertation, Virginia Polytechnic Institute and State University (1993)

  23. Piao, G.-R., Du, Q., Lee, H.-C.: Adaptive CVT-based reduced-order modeling of Burgers equation. J. KSIAM 13(2), 141–159 (2009)

    Google Scholar 

  24. Triggiani, R., Bulrisch, R.: Boundary feedback stabilizability parabolic equations. Appl. Math. Optim. 6, 201–220 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Chun Lee.

Additional information

This work was supported by grant No. R01-2006-000-10472-0 from KOSEF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HC., Piao, GR. Boundary Feedback Control of the Burgers Equations by a Reduced-Order Approach Using Centroidal Voronoi Tessellations. J Sci Comput 43, 369–387 (2010). https://doi.org/10.1007/s10915-009-9310-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9310-4

Keywords

Navigation