Skip to main content
Log in

Multirate Explicit Adams Methods for Time Integration of Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper constructs multirate linear multistep time discretizations based on Adams-Bashforth methods. These methods are aimed at solving conservation laws and allow different timesteps to be used in different parts of the spatial domain. The proposed family of discretizations is second order accurate in time and has conservation and linear and nonlinear stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global timesteps—restricted by the largest value of the Courant number on the grid—and therefore results in more efficient computations. Numerical results obtained for the advection and Burgers’ equations confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrus, J.F.: Numerical solution for ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16(4), 605–611 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrus, J.F.: Stability of a multi-rate method for numerical integration of ODEs. Comput. Math. Appl. 25(2), 3–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147(2), 411–425 (2002). ISSN 0377-0427. doi:10.1016/S0377-0427(02)00476-4

    Article  MATH  MathSciNet  Google Scholar 

  4. Chakravarthy, S., Osher, S.: Numerical experiments with the Osher upwind scheme for the Euler equations. AIAA J. 21, 241–1248 (1983)

    Article  MathSciNet  Google Scholar 

  5. Chakravarthy, S., Osher, S.: Computing with high-resolution upwind schemes for hyperbolic equations. Lect. Appl. Math. 22, 57–86 (1985)

    MathSciNet  Google Scholar 

  6. Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33(3), 239–278 (2007). doi:10.1007/s10915-007-9151-y

    Article  MATH  MathSciNet  Google Scholar 

  7. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Engstler, C., Lubich, C.: Multirate extrapolation methods for differential equations with different time scales. Computing 58(2), 173–185 (1997). ISSN 0010-485X

    Article  MATH  MathSciNet  Google Scholar 

  9. Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT 24, 484–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). ISSN 0036-1445

    Article  MATH  MathSciNet  Google Scholar 

  11. Günther, M., Rentrop, P.: Multirate ROW-methods and latency of electric circuits. Appl. Numer. Math. (1993)

  12. Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge-Kutta methods. BIT 41(3), 504–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  14. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Hundsdorfer, W., Koren, B., van Loon, M.: A positive finite-difference advection scheme. J. Comput. Phys. 117(1), 35–46 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41(2), 605–623 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kato, T., Kataoka, T.: Circuit analysis by a new multirate method. Electr. Eng. Jpn. 126(4), 55–62 (1999)

    Article  Google Scholar 

  19. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31(3), 482–528 (1991). ISSN 0006-3835. doi:http://dx.doi.org/10.1007/BF01933264

    Article  MATH  MathSciNet  Google Scholar 

  20. Kværnø, A.: Stability of multirate Runge-Kutta schemes. Int. J. Differ. Equ. Appl. 1(1), 97–105 (2000)

    MathSciNet  Google Scholar 

  21. Kværnø, A., Rentrop, P.: Low order multirate Runge-Kutta methods in electric circuit simulation (1999)

  22. Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  23. Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55(2), 213–223 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Math. Comput. 55(2), 177–199 (1991)

    MathSciNet  Google Scholar 

  25. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  26. Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21(5), 955–984 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osher, S., Chakravarthy, S.: Very high order accurate TVD schemes. In Oscillation Theory, Computation, and Methods of Compensated Compactness. IMA Vol. Math. Appl. vol. 2, pp. 229–274, (1986)

  28. Rice, J.R.: Split Runge-Kutta methods for simultaneous equations. J. Res. Nat. Inst. Stand. Technol. 60(B) (1960)

  29. Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comput. 20(2), 534–552 (1998). ISSN 1064-8275. doi:http://dx.doi.org/10.1137/S1064827596306562

    Article  MathSciNet  Google Scholar 

  30. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)

    Article  MATH  Google Scholar 

  31. Shu, C.-W.: A survey of strong stability preserving high order time discretizations. In: Estep, D., Tavener, T. (eds.) Collected Lectures on the Preservation of Stability Under Discretization, pp. 51–65. SIAM, Philadelphia (2002)

    Google Scholar 

  32. Shu, C.-W., Osher, S.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49(179), 105–121 (1987)

    Article  MATH  Google Scholar 

  33. Shu, C.-W., Osher, S.: TVB boundary treatment for numerical solutions of conservation laws. Math. Comput. 49(179), 105–121 (1987)

    Article  MATH  Google Scholar 

  34. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). ISSN 0021-9991

    Article  MATH  MathSciNet  Google Scholar 

  35. Vreugdenhil, C.B., Koren, B. (eds.): Numerical Methods for Advection–Diffusion Problems, Notes on Numerical Fluid Mechanics, vol. 45. Vieweg, Wiesbaden (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Sandu.

Additional information

This work was supported by the National Science Foundation through award NSF CCF-0515170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandu, A., Constantinescu, E.M. Multirate Explicit Adams Methods for Time Integration of Conservation Laws. J Sci Comput 38, 229–249 (2009). https://doi.org/10.1007/s10915-008-9235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9235-3

Keywords

Navigation