Skip to main content
Log in

Growth, Structure and Pattern Formation for Thin Films

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An epitaxial thin film consists of layers of atoms whose lattice properties are determined by those of the underlying substrate. This paper reviews mathematical modeling, analysis and simulation of growth, structure and pattern formation for epitaxial systems, using an island dynamics/level set method for growth and a lattice statics model for strain. Epitaxial growth involves physics on both atomistic and continuum length scales. For example, diffusion of adatoms can be coarse-grained, but nucleation of new islands and breakup for existing islands are best described atomistically. In heteroepitaxial growth, mismatch between the lattice spacing of the substrate and the film will introduce a strain into the film, which can significantly influence the material structure, for example leading to formation of quantum dots. Technological applications of epitaxial structures, such as quantum dot arrays, require a degree of geometric uniformity that has been difficult to achieve. Modeling and simulation may contribute insights that will help to overcome this problem. We present simulations that combine growth and strain showing the structure of nanocrystals and the formation of patterns in epitaxial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: A level set approach to a unified model for etching, deposition, and lithography. 1. Algorithms and two-dimensional simulations. J. Comput. Phys. 120, 128–144 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adalsteinsson, D., Sethian, J.A.: A level set approach to a unified model for etching, deposition, and lithography. 2. 3-Dimensional simulations. J. Comput. Phys. 122, 348–366 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adalsteinsson, D., Sethian, J.A.: A level set approach to a unified model for etching, deposition, and lithography. 3. Redeposition, reemission, surface diffusion, and complex simulations. J. Comput. Phys. 138, 193–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bae, Y., Caflisch, R.E.: Strain in layered nanocrystals. Eur. J. Appl. Math. 18, 571–585 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bales, G.S., Chrzan, D.C.: Dynamics of irreversible island growth during submonolayer epitaxy. Phys. Rev. B 50, 6057–6067 (1994)

    Article  Google Scholar 

  6. Bales, G.S., Zangwill, A.: Morphological instability of a terrace edge during step flow growth. Phys. Rev. B 41, 5500–5508 (1990)

    Article  Google Scholar 

  7. Burton, W.K., Cabrera, N., Frank, F.C.: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. Lond. Ser. A 243, 299–358 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caflisch, R.E., E, W., Gyure, M., Merriman, B., Ratsch, C.: Kinetic model for a step edge in epitaxial growth. Phys. Rev. E 59, 6879–6887 (1999)

    Article  Google Scholar 

  9. Caflisch, R.E., Lee, Y.-J., Shu, S., Xiao, Y., Xu, J.: An application of multigrid methods for a discrete elastic model for epitaxial systems. J. Comput. Phys. 219, 697–714 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cao, Y.-W., Banin, U.: Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem. Int. Ed. 38, 3692–3694 (1999)

    Article  Google Scholar 

  11. Cermelli, P., Jabbour, M.E.: Possible mechanism for the onset of step-bunching instabilities during the epitaxy of single-species crystalline films. Phys. Rev. B 75, 165409 (2007)

    Article  Google Scholar 

  12. Chen, S., Kang, M., Merriman, B., Caflisch, R.E., Ratsch, C., Fedkiw, R., Gyure, M.F., Osher, S.J.: Level set method for thin film epitaxial growth. J. Comput. Phys. 167, 475–500 (2001)

    Article  MATH  Google Scholar 

  13. Chopp, D.L.: A level-set method for simulating island coarsening. J. Comput. Phys. 162, 104–122 (2000)

    Article  MATH  Google Scholar 

  14. Connell, C., Caflisch, R.E., Luo, E., Simms, G.D.: The elastic field of a surface step: The Marchenko-Parshin formula in the linear case. J. Comput. Appl. Math. 196, 368–386 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eaglesham, D.J., Cerullo, M.: Dislocation-free Stranski-Krastanov growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943–1946 (1990)

    Article  Google Scholar 

  16. Ghez, R., Iyer, S.S.: The kinetics of fast steps on crystal surfaces and its application to the molecular beam epitaxy of silicon. IBM J. Res. Develop. 32, 804–818 (1988)

    Article  Google Scholar 

  17. Guha, S., Madhukar, A., Rajkumar, K.C.: Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxial growth of highly strained In x Ga1−x As on GaAs(100). Appl. Phys. Lett. 57, 2110–2112 (1990)

    Article  Google Scholar 

  18. Hauser, F., Jabbour, M.E., Voigt, A.: A step-flow model for the heteroepitaxial growth of strained, substitutional, binary alloy films with phase segregation: I. Theory. Multiscale Model. Simul. 6, 158–189 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lee, S., Caflisch, R.E., Lee, Y.-J.: Artificial boundary conditions for continuum and discrete elasticity. SIAM J. Appl. Math. 66, 1749–1775 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, B., Caflisch, R.E.: Analysis of island dynamics in epitaxial growth. Multiscale Model. Simul. 1, 150–171 (2002)

    MathSciNet  Google Scholar 

  21. Lung, M.T., Lam, C.-H., Sanders, L.M.: Island, pit, and groove formation in strained heteroepitaxy. Phys. Rev. Lett. 95, 086102 (2005)

    Article  Google Scholar 

  22. Manna, L., Schoer, E.C., Li, L.-S., Alivisatos, A.P.: Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124, 7136–7145 (2002)

    Article  Google Scholar 

  23. Michely, T., Krug, J.: Islands, Mounds and Atoms. Springer, Berlin (2004)

    Google Scholar 

  24. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., Lagally, M.G.: Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020–1023 (1990)

    Article  Google Scholar 

  25. Mokari, T., Banin, U.: Synthesis and properties of CdSe/ZnS core/shell nanorods. Chemistry of Materials 15(20), 3955–3960 (2003)

    Article  Google Scholar 

  26. Niu, X., Vardavas, R., Caflisch, R.E., Ratsch, C.: Level set simulation of directed self-assembly during epitaxial growth. Phys. Rev. B, Brief Report 74 (2006). Art. No. 193403

  27. Niu, X., Lee, Y.J., Caflisch, R.E., Ratsch, C.: Optimal capping layer thickness for stacked quantum dots. Preprint (2008)

  28. Osher, S., Sethian, J.A.: Front propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  30. O’Sullivan, P.L., Baumann, F.H., Gilmer, G.H., Torre, J.D., Shin, C.S., Petrov, I., Lee, T.Y.: Continuum model of thin film deposition incorporating finite atomic length scales. J. Appl. Phys. 92, 3487–3494 (2002)

    Article  Google Scholar 

  31. Penev, E., Kratzer, P., Scheffler, M.: Effect of strain on surface diffusion in semiconductor heteroepitaxy. Phys. Rev. B 64, 085401 (2001)

    Article  Google Scholar 

  32. Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997)

    Article  Google Scholar 

  33. Petersen, M., Ratsch, C., Caflisch, R.E., Zangwill, A.: Level set approach to reversible epitaxial growth. Phys. Rev. E 64(061602), U231–U236 (2001)

    Google Scholar 

  34. Ratsch, C., Šmilauer, P., Zangwill, A., Vvedensky, D.D.: Submonolayer epitaxy without a critical nucleus. Surf. Sci. 329, L599–L604 (1995)

    Article  Google Scholar 

  35. Ratsch, C., Seitsonen, A.P., Scheffler, M.: Strain dependence of surface diffusion: Ag on Ag(111) and Pt(111). Phys. Rev. B 55, 6750–6753 (1997)

    Article  Google Scholar 

  36. Ratsch, C., Gyure, M.F., Chen, S., Kang, M., Vvedensky, D.D.: Fluctuations and scaling in aggregation phenomena. Phys. Rev. B 61, 10598–10601 (2000)

    Article  Google Scholar 

  37. Ratsch, C., Gyure, M.F., Caflisch, R.E., Gibou, F., Petersen, M., Kang, M., Garcia, J., Vvedensky, D.D.: Level-set method for island dynamics in epitaxial growth. Phys. Rev. B 65(195403), U697–U709 (2002)

    Google Scholar 

  38. Russo, G., Smereka, P.: Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo. J. Comput. Phys. 214, 809–828 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schindler, A.C., Gyure, M.F., Simms, G.D., Vvedensky, D.D., Caflisch, R.E., Connell, C., Luo, E.: Theory of strain relaxation in heteroepitaxial systems. Phys. Rev. B 67, 075316 (2003)

    Article  Google Scholar 

  40. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  41. Shchukin, V.A., Bimberg, D.: Spontaneous ordering of nanostructure on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999)

    Article  Google Scholar 

  42. Stangl, J., Holy, V., Bauer, G.: Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725–783 (2004)

    Article  Google Scholar 

  43. Smereka, P.: Spiral crystal growth. Physica D 138, 282–301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Stroscio, J.A., Pierce, D.T.: Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy. Phys. Rev. B 49, 8522–8525 (1994)

    Article  Google Scholar 

  45. Venables, J.: Rate equation approaches to thin film nucleation kinetics. Philos. Mag. 27, 697–738 (1973)

    Article  Google Scholar 

  46. Vvedensky, D.D.: Atomistic modeling of epitaxial growth: comparisons between lattice models and experiment. Comput. Mater. Sci. 6, 182–187 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russel E. Caflisch.

Additional information

We acknowledge support from the Focus Center Research Program (FCRP)—Center on Functional Engineered Nano Architectonics (FENA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caflisch, R.E. Growth, Structure and Pattern Formation for Thin Films. J Sci Comput 37, 3–17 (2008). https://doi.org/10.1007/s10915-008-9206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9206-8

Keywords

Navigation