Skip to main content
Log in

Phylogeographic relationships, structure, and genetic diversity of the Mexican endemic volcano Harvest Mouse Reithrodontomys chrysopsis (Rodentia, Cricetidae)

  • Research
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Genetic studies in the highlands of Mexico have revealed extensive intraspecific differentiation and highly structured genetic variation in rodents and other taxa. One of the most important and complex systems in these highlands is the Trans-Mexican Volcanic Belt (TMVB), a biogeographic region located in central Mexico. Recent studies suggest strong structure and undiscovered diversity within the TMVB highlands, which indicates more study of endemic species is warranted. One of these species is the endemic Volcano Harvest Mouse Reithrodontomys chrysopsis, which inhabits small and fragmented patches at high altitudes. This mouse is poorly known, under-represented in field collections, and has been the subject of few studies of phylogenetics, taxonomy, and evolutionary history. This study aimed to assess the phylogenetic and intraspecific relationships of R. chrysopsis throughout its known geographic distribution to better understand the evolutionary patterns of it and other TMVB mammals. Our phylogenetic analyses using Cytb and Fgb-I7 markers revealed that R. chrysopsis is sister to R. sumichrasti and R. megalotis, which contrasts with a previous hypothesis based on morphological data. Genetic differentiation, divergence time, and species delimitation analyses showed three main divergent lineages within R. chrysopsis, located at the western, central, and eastern TMVB. These lineages diverged during the Pliocene-Pleistocene interval. Our results support the hypothesis that volcanic activity and climatic oscillations during the Pleistocene in central Mexico promoted diversification processes within the TMVB. Further molecular and morphological studies will be needed to provide information for the taxonomic designation of the east divergent lineage detected herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and supplementary information file and are available from the corresponding author upon reasonable request. The sequences generated and analyzed during the current study are openly available in GenBank under accession numbers OP938697-OP938732. Additional data downloaded from GenBank and specimen information are available in Online Resource 1.

References

  • Álvarez-Castañeda ST, Álvarez T, González-Ruiz N (2015) Keys for Identifying Mexican Mammals. Centro de Investigaciones Biológicas del Noroeste and S. C. Asociación Mexicana de Mastozoología AC, Guadalajara, Jalisco.

    Google Scholar 

  • Arellano E, González-Cozátl FX, Rogers DS (2005) Molecular systematics of Middle American harvest mice Reithrodontomys (Muridae), estimated from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol 37(2):529–540. https://doi.org/10.1016/j.ympev.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  • Arellano E, Almendra AL, Martínez-Borrego D, González-Cozátl FX, Rogers DS (2023). Revisiting species delimitation within Reithrodontomys sumichrasti (Rodentia: Cricetidae) using molecular and ecological evidence. Therya 14(1):161–179. https://doi.org/10.12933/therya-23-2236

    Article  Google Scholar 

  • Arriaga-Jiménez A, Rös M, Halffter G (2018) High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt. PeerJ 6:e4468. https://doi.org/10.7717/peerj.4468

    Article  PubMed Central  PubMed  Google Scholar 

  • Arriola-Padilla V, Estrada-Martínez E, Ortega-Rubio A, Pérez-Miranda R, Gijón-Hernández AR (2014) Deterioro en áreas naturales protegidas del centro de México y del Eje Neovolcánico Transversal. Investig Cienc Univ Autón Aguascalientes 22(60):37–49

    Google Scholar 

  • Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87(4):643–662. https://doi.org/10.1644/06-MAMM-F-038R2.1

    Article  PubMed  Google Scholar 

  • Blair C, Bryson RW, Linkem CW, Lazcano D, Klicka J, McCormack JE (2019) Cryptic diversity in the Mexican highlands: thousands of UCE loci help illuminate phylogenetic relationships, species limits and divergence times of montane rattlesnakes (Viperidae: Crotalus). Mol Ecol Resour 19(2):349–365. https://doi.org/10.1111/1755-0998.12970

    Article  PubMed  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina, A et al (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley RD, Ordóñez-Garza N, Ceballos G, Rogers DS, Schmidly DJ (2017) A new species in the Peromyscus boylii species group (Cricetidae: Neotominae) from Michoacán, México. J Mammal 98(1):154–165. https://doi.org/10.1093/jmammal/gyw160

    Article  Google Scholar 

  • Castleberry SB, King TL, Wood PB, Ford WM (2002) Microsatellite DNA analysis of population structure in Allegheny woodrats (Neotoma magister). J Mammal 83(4):1058–1070. https://doi.org/10.1644/1545-1542(2002)083>1058:MDAOPS<2.0.CO;2

    Article  Google Scholar 

  • Challenger A, Caballero J (1998) Utilización y Conservación de los Ecosistemas Terrestres de México: Pasado, Presente y Futuro. Comisión Nacional para el Concimiento y Uso de la Biodiversidad, México, DF

    Google Scholar 

  • Crameri S, 2018. Display the DISSECT/speciesDA.jar similarity matrix. GitHub Repository. https://github.com/scrameri/smtools/tree/master/SpeciesDelimitation. Accessed 23 September 2020

  • Espinosa D, Ocegueda S (2007) Introduction. In: Luna I, Morrone JJ, Espinosa D (eds) Biodiversidad de la Faja Volcánica Transmexicana. Universidad Nacional Autónoma de México, México, DF, pp 5–6

    Google Scholar 

  • Fa JE, Morales J (1991) Mammals and Protected Areas in the Trans-Mexican Neovolcanic Belt. University of Oklahoma Press, Oklahoma

    Google Scholar 

  • Fa JE, Morales J (1993). Patterns of mammalian diversity in Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological Diversity of Mexico: Origins and Distribution. Oxford University Press, New York, pp 319–361

    Google Scholar 

  • Ferrusquía–Villafranca I (2007) Ensayo sobre la caracterización y significación biológica. In: Luna I, Morrone JJ, Espinosa D (eds) Biodiversidad de la Faja Volcánica Transmexicana. Universidad Nacional Autónoma de México, Mexico, DF, pp 7–24

    Google Scholar 

  • Flores-Villela O (1993) Herpetofauna of Mexico: distribution and endemism. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds). Biological Diversity of Mexico: Origins and Distribution. Oxford University Press, New York, pp 253–280

    Google Scholar 

  • Flores-Villela O, Gerez P (1994) Biodiversidad y Conservación en México: Vertebrados, Vegetación y Uso del Suelo. Comisión Nacional para el Conocimiento de la Biodiversidad, Mexico, DF

    Google Scholar 

  • Gámez N, Escalante T, Rodríguez G, Linaje M, Morrone JJ (2012) Caracterización biogeográfica de la Faja Volcánica Transmexicana y análisis de los patrones de distribución de su mastofauna. Rev Mex Biodivers 83(1):258–272

    Google Scholar 

  • García-Palomo A, Macías JL, Garduño VH (2000) Miocene to recent structural evolution of the Nevado de Toluca volcano region, central Mexico. Tectonophysics 318(1–4):281–302. https://doi.org/10.1016/s0040-1951(99)00316-9

    Article  Google Scholar 

  • González-Ruiz N, Ramírez-Pulido J, Genoways HH (2007) Review of the harvest mice (Genus Reithrodontomys) in the Mexican state of Mexico. West N Am Nat 67(2):238–250. https://doi.org/10.3398/1527-0904(2007)67[238:ROTHMG]2.0.CO;2

  • Hardy D, González-Cozatl F, Arellano E, Rogers D (2013) Molecular phylogeographic structure and phylogenetics of Sumichrast’s harvest mouse (Reithrodontomys sumichrasti: Family Cricetidae) based on mitochondrial and nuclear sequences. Mol Phylogenet Evol 68(2):282–292. https://doi.org/10.1016/j.ympev.2013.03.028

    Article  PubMed  Google Scholar 

  • Harris D, Rogers DS, Sullivan J (2000) Phylogeography of Peromyscus furvus (Rodentia; Muridae) based on cytochrome b sequence data. Mol Ecol 9(12):2129–2135. https://doi.org/10.1046/j.1365-294x.2000.01135.x

    Article  CAS  PubMed  Google Scholar 

  • Hasenaka T, Ban M, Delgado-Granados H (1994) Contrasting vulcanism in the Michoacán-Guanajuato Volcanic Field, central Mexico: shield volcanoes vs cinder cones. Geofís Int 33(1):125–138

    Google Scholar 

  • Hillis DM, Moritz G, Mable BK (1996) Molecular Systematics (2nd Ed.). Sinauer, Sunderland, Massachsetts

    Google Scholar 

  • Hooper ET (1952) A systematic review of the harvest mice (genus Reithrodontomys) of Latin America. Misc Publ Mus Zool Univ Mich 77:1–225.

    Google Scholar 

  • Howell AH (1914) Revision of the American harvest mice (genus Reithrodontomys). N Am Fauna 36:1–97.

    Article  CAS  Google Scholar 

  • Ibarra-Arzave G, Solleiro-Rebolledo E, Sedov S, Leonard D (2019). The role of pedogenesis in palaeosols of Mexico basin and its implication in the paleoenvironmental reconstruction. Quat Int 502:267–279. https://doi.org/10.1016/j.quaint.2019.01.012

    Article  Google Scholar 

  • Jiménez-Noriega PMS, Terrazas T, López-Mata L, Sánchez-González A, Vibrans H (2017) Anatomical variation of five plant species along an elevation gradient in Mexico City basin within the Trans-Mexican Volcanic Belt, Mexico. J Mt Sci 14(11):2182–2199. https://doi.org/10.1007/s11629-017-4442-8

    Article  Google Scholar 

  • Jones G L (2017) Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Math Biol 74:447–467. https://doi.org/10.1007/s00285-016-1034-0

    Article  PubMed  Google Scholar 

  • Jones GL, Aydin Z, Oxelman B (2015) DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31(7):991–998. https://doi.org/10.1093/bioinformatics/btu770

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29(6):1695–1701. https://doi.org/10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276–3278. https://doi.org/10.1093/bioinformatics/btu531.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  • León-Paniagua L, Navarro-Sigüenza AG, Hernández-Baños BE, Morales JC (2007) Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands. Mol Phylogenet Evol 42(3):653–664. https://doi.org/10.1016/j.ympev.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  • León-Tapia MA, Cervantes FA (2019) Noteworthy records and ecological niche modeling of the rare and endangered Goldman’s diminutive woodrat Nelsonia goldmani (Rodentia: Cricetidae) endemic to central Mexican highlands. Mammalia 83(4):330–342. https://doi.org/10.1515/mammalia-2018-0023

    Article  Google Scholar 

  • León-Tapia MA, Cervantes FA (2021) Systematics and the unexpected high mitochondrial genetic divergence of Nelsonia goldmani (Rodentia: Cricetidae) from Mexican highlands. J Mamm Evol 28:939–951. https://doi.org/10.1007/s10914-020-09532-7

    Article  Google Scholar 

  • León-Tapia MA, Fernández JA, Rico Y, Cervantes FA, Espinosa de los Monteros A. (2020) A new mouse of the Peromyscus maniculatus species complex (Cricetidae) from the highlands of central Mexico. J Mammal 101(4):1117–1132. https://doi.org/10.1093/jmammal/gyaa027

    Article  Google Scholar 

  • León-Tapia MA, Rico Y, Fernández JA, Arellano E, Espinosa de los Monteros A. (2021) Role of Pleistocene climatic oscillations on genetic differentiation and evolutionary history of the Transvolcanic deer mouse Peromyscus hylocetes (Rodentia: Cricetidae) throughout the Mexican central highlands. J Zool Syst Evol Res 59(8):2481–2499. https://doi.org/10.1007/10.1111/jzs.12541

    Article  Google Scholar 

  • Lounejeva-Baturina E, Morales-Puente P, Cabadas-Báez HV, Cienfuegos-Alvarado E, Vallejo-Gómez E, Solleiro-Rebolledo E (2006) Late Pleistocene to Holocene environmental changes from δ13C determinations in soils at Teotihuacan, Mexico. Geofis Int 45(2):85–98.

    Google Scholar 

  • Macías JL, Arce JL, García-Tenorio F, Layer PW, Rueda H, Reyes-Agustin G et al (2012) Geology and geochronology of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes, Sierra Nevada, central Mexico. In: Aranda-Gómez JJ, Tolson G, Molina-Garza RS (eds) The Southern Cordillera and Beyond. Geological Society of America, Boulder, Colorado, pp 163–193 https://doi.org/10.1130/2012.0025(08)

    Chapter  Google Scholar 

  • Merriam CH (1901) Descriptions of 23 new harvest mice (genus Reithrodontomys). Proc Wash Acad Sci 3:547–558.

    Google Scholar 

  • Morrone JJ (2005) Hacia una síntesis biogeográfica de México. Rev Mex Biodivers 76(2):207–252

    Google Scholar 

  • Morrone JJ (2010) Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography 33(2):355–361. https://doi.org/10.1111/j.1600-0587.2010.06266.x

    Article  Google Scholar 

  • Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. The Johns Hopkins University Press, Baltimore, pp 894–1531

    Google Scholar 

  • Nava-García E (2004) Filogeografía del ratón de los volcanes Neotomodon alstoni. Dissertation, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos

  • Nava-García E, Guerrero-Enríquez JA, Arellano E (2016) Molecular phylogeography of harvest mice (Reithrodontomys megalotis) based on cytochrome b DNA sequences. J Mamm Evol 23(3):297–307. https://doi.org/10.1007/s10914-015-9318-5

    Article  Google Scholar 

  • Ortega B, Vázquez G, Caballero M, Israde I, Lozano-García S, Schaaf P, Torres E (2010) Late Pleistocene: Holocene record of environmental changes in Lake Zirahuen, Central Mexico. J Paleolimnol 44(3):745–760. https://doi.org/10.1007/s10933-010-9449-x

    Article  Google Scholar 

  • Ortega-Guerrero B, Avendaño D, Caballero M, Lozano-García S, Brown ET, Rodríguez A, et al (2020) Climatic control on magnetic mineralogy during the late MIS 6 - Early MIS 3 in Lake Chalco, central Mexico. Quat Sci Rev 230:106–163. https://doi.org/10.1016/j.quascirev.2020.106163

    Article  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. https://doi.org/10.1093/bioinformatics/btp696

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Crespo MJ, Ornelas JF, González-Rodríguez A, Ruiz-Sanchez E, Vásquez-Aguilar AA, Ramírez-Barahona S (2017) Phylogeography and population differentiation in the Psittacanthus calyculatus (Loranthaceae) mistletoe: a complex scenario of climate-volcanism interaction along the Trans-Mexican Volcanic Belt. J Biogeogr 44(11):2501–2514. https://doi.org/10.1111/jbi.13070

    Article  Google Scholar 

  • Ramamoorthy TP, Bye R, Lot A, Fa J (1998) Diversidad Biológica de México: Orígenes y Distribución. México, Instituto de Biología, Universidad Nacional Autónoma de México, México, DF

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  • Rodríguez-Gómez F, Oyama K, Ochoa-Orozco M, Mendoza-Cuenca L, Gaytán-Legaria R, González-Rodríguez A (2018) Phylogeography and climate-associated morphological variation in the endemic white oak Quercus deserticola (Fagaceae) along the Trans-Mexican Volcanic Belt. Botany 96(2):121–133. https://doi.org/10.1139/cjb-2017-0116

    Article  CAS  Google Scholar 

  • Rogers DS, Engstrom MD (1992) Evolutionary implications of allozymic variation in tropical Peromyscus of the mexicanus species group. J Mammal 73(1):55–69. https://doi.org/10.2307/1381866

    Article  Google Scholar 

  • Román-Colín C (2015) Estructura y variación genética en poblaciones de Neotomodon alstoni. Dissertation, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos.

  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Guajardo JC (2002) Filogeografía del roedor múrido endémico al Eje Volcánico Transversal: Reithrodontomys chrysopsis. Dissertation, Universidad Nacional Autónoma de México, UNAM.

  • Ruiz-Sanchez E, Specht CD (2013) Influence of the geological history of the Trans-Mexican Volcanic Belt on the diversification of Nolina parviflora (Asparagaceae: Nolinoideae). J Biogeogr 40(7):1336–1347. https://doi.org/10.1111/jbi.12073

    Article  Google Scholar 

  • Smith MF, Patton JL (1993) The diversification of South American rodents: Evidence from mitochondrial sequence data for the Akodontine tribe. Biol J Linn Soc 50(3):149–177. https://doi.org/10.1006/bijl.1993.1052

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML Version 8. A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sullivan J, Arellano E, Rogers DS (2000) Comparative phylogeography of Mesoamerican highland rodents: concerted versus independent responses to past climate fluctuations. Am Nat 155(6):755–768. https://doi.org/10.1086/303362

    Article  PubMed  Google Scholar 

  • Sunny A, González-Fernández A, D’Addario M (2017) Potential distribution of the endemic imbricate alligator lizard (Barisia imbricata imbricata) in highlands of central Mexico. Amphib-Reptil 38(2):225–231. https://doi.org/10.1163/15685381-00003092

    Article  Google Scholar 

  • Sunny A, Duarte-de Jesús L, Aguilera-Hernández A, Ramírez-Corona F, Suárez-Atilano M, Percino-Daniel R et al (2019). Genetic diversity and demography of the critically endangered Roberts’ false brook salamander (Pseudoeurycea robertsi) in Central Mexico. Genetica 147:149–164. https://doi.org/10.1007/s10709-019-00058-2

    Article  PubMed  Google Scholar 

  • Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22(12):3261–3278. https://doi.org/10.1111/mec.12310

    Article  PubMed  Google Scholar 

  • Wickliffe JK, Hoffmann FG, Carroll DS, Duninia-Barkovskaya Y, Bradley RD (2003) PCR and sequencing primers for intron 7 (Fgb-I7) of the fibrinogen, B beta polypeptide (Fgb) in mammals: a novel nuclear DNA phylogenetic marker. Occas Pap Mus Tex Tech Univ 219:1–6.

    Google Scholar 

Download references

Acknowledgements

We thank Francisco X. González Cózatl at the Colección de Mamíferos, the Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos and Yolanda Hortelano Moncada at the Colección Nacional de Mamíferos (CNMA), Universidad Nacional Autónoma de México for providing tissue samples.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection was performed by all authors and analyses were performed by EAA, ENG, and MALT. The first draft of the manuscript was written by EAA, ENG, and MALT. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Elizabeth Arellano.

Ethics declarations

Financial interest

The authors have no relevant financial or non-financial interests to disclose.

Conflict of interest

The authors declare that they have no conflicts of interest or competing interests.

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Tapia, M.Á., Nava-García, E., Cervantes, F.A. et al. Phylogeographic relationships, structure, and genetic diversity of the Mexican endemic volcano Harvest Mouse Reithrodontomys chrysopsis (Rodentia, Cricetidae). J Mammal Evol 30, 735–746 (2023). https://doi.org/10.1007/s10914-023-09670-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-023-09670-8

Keywords

Navigation